1
|
Gilchrest BA: Photoaging. J Invest
Dermatol. 133:E2–E6. 2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Weihermann AC, Lorencini M, Brohem CA and
de Carvalho CM: Elastin structure and its involvement in skin
photoaging. Int J Cosmet Sci. 39:241–247. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Schneider SL and Lim HW: Review of
environmental effects of oxybenzone and other sunscreen active
ingredients. J Am Acad Dermatol. 80:266–271. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Burke KE: Mechanisms of aging and
development-a new understanding of environmental damage to the skin
and prevention with topical antioxidants. Mech Ageing Dev.
172:123–130. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Ma DL and Vano-Galvan S: Actinic
Granuloma. N Engl J Med. 376(475)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Xie HF, Liu YZ, Du R, Wang B, Chen MT,
Zhang YY, Deng ZL and Li J: MiR-377 induces senescence in human
skin fibroblasts by targeting DNA methyltransferase 1. Cell Death
Dis. 8(e2663)2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Li M, Li L, Zhang X, Zhao H, Wei M, Zhai
W, Wang B and Yan Y: LncRNA RP11-670E13.6, interacted with hnRNPH,
delays cellular senescence by sponging microRNA-663a in UVB damaged
dermal fibroblasts. Aging (Albany NY). 11:5992–6013.
2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Guo JU, Agarwal V, Guo H and Bartel DP:
Expanded identification and characterization of mammalian circular
RNAs. Genome Biol. 15(409)2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Wang K, Long B, Liu F, Wang JX, Liu CY,
Zhao B, Zhou LY, Sun T, Wang M, Yu T, et al: A circular RNA
protects the heart from pathological hypertrophy and heart failure
by targeting miR-223. Eur Heart J. 7:2602–2611. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Chen J, Li Y, Zheng Q, Bao C, He J, Chen
B, Lyu D, Zheng B, Xu Y, Long Z, et al: Circular RNA profile
identifies circPVT1 as a proliferative factor and prognostic marker
in gastric cancer. Cancer Lett. 388:208–219. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Dube U, Del-Aguila JL, Li Z, Budde JP,
Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, et al:
An atlas of cortical circular RNA expression in Alzheimer disease
brains demonstrates clinical and pathological associations. Nat
Neurosci. 22:1903–1912. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Chen FG, Zhang WJ, Bi D, Liu W, Wei X,
Chen FF, Zhu L, Cui L and Cao Y: Clonal analysis of nestin(-)
vimentin(+) multipotent fibroblasts isolated from human dermis. J
Cell Sci. 120:2875–2883. 2007.PubMed/NCBI View Article : Google Scholar
|
15
|
Lamore SD and Wondrak GT: UVA causes dual
inactivation of cathepsin B and L underlying lysosomal dysfunction
in human dermal fibroblasts. J Photchem Photobiol B. 123:1–12.
2013.PubMed/NCBI View Article : Google Scholar
|
16
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43(e47)2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Livak K and Schmittgen T: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2000.PubMed/NCBI View Article : Google Scholar
|
18
|
Park YM and Park SN: Inhibitory effect of
lupeol on MMPs expression using aged fibroblast through repeated
UVA Irradiation. Photochem Photobiol. 95:587–594. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Peng Y, Song X, Zheng Y, Cheng H and Lai
W: circCOL3A1-859267 regulates type I collagen expression by
sponging miR-29c in human dermal fibroblasts. Eur J Dermatol.
28:613–620. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Bouchie A: First microRNA mimic enters
clinic. Nat Biotechnol. 31(577)2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Farrar MD: Advanced glycation end products
in skin ageing and photoageing: What are the implications for
epidermal function? Exp Dermatol. 25:947–948. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Beg MS, Brenner AJ, Sachdev J, Borad M,
Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase
I study of MRX34, a liposomal miR-34a mimic, administered twice
weekly in patients with advanced solid tumors. Invest New Drugs.
35:180–188. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Wong RR, Abd-Aziz N, Affendi S and Poh CL:
Role of microRNAs in antiviral responses to dengue infection. J
Biomed Sci. 27(4)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Wheatley AK, Kramski M, Alexander MR, Toe
JG, Center RJ and Purcell DF: Co-expression of miRNA targeting the
expression of PERK, but not PKR, enhances cellular immunity from an
HIV-1 Env DNA vaccine. PLoS One. 6(e18225)2011.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhou BR, Guo XF, Zhang JA, Xu Y, Li W, Wu
D, Yin ZQ, Permatasari F and Luo D: Elevated miR-34c-5p mediates
dermal fibroblast senescence by ultraviolet irradiation. Int J Biol
Sci. 9:743–752. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Ivanov A, Memczak S, Wyler E, Torti F,
Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M,
Dieterich C, et al: Analysis of intron sequences reveals hallmarks
of circular RNA biogenesis in animals. Cell Rep. 10:170–177.
2015.PubMed/NCBI View Article : Google Scholar
|
27
|
You X, Vlatkovic Babic A, Will T, Epstein
Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al: Neural
circular RNAs are derived from synaptic genes and regulated by
development and plasticity. Nat Neurosci. 18:603–910.
2015.PubMed/NCBI View
Article : Google Scholar
|
28
|
Peng Y, Song X, Zheng Y, Wang X and Lai W:
Circular RNA profiling reveals that circCOL3A1-859267 regulate type
I collagen expression in photoaged human dermal fibroblasts.
Biochem Biophys Res Commun. 486:277–284. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Xu D, Li D, Zhao Z, Wu J and Zhao M:
Regulation by walnut protein hydrolysate on the components and
structural degradation of photoaged skin in SD rats. Food Funct.
10:6792–6802. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang X, Zhang G, Huang H, Li H, Lin S and
Wang Y: Differentially expressed MicroRNAs in radioresistant and
radiosensitive atypical meningioma: A clinical study in chinese
patients. Front Oncol. 10(501)2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Quan T, He T, Kang S, Voorhees JJ and
Fisher GJ: Solar ultraviolet irradiation reduces collagen in
photoaged human skin by blocking transforming growth factor-beta
type II receptor/Smad signaling. Am J Pathol. 165:741–751.
2004.PubMed/NCBI View Article : Google Scholar
|
32
|
Battie C, Jitsukawa S, Bernerd F, Del Bino
S, Marionnet C and Verschoore M: New insights in photoaging, UVA
induced damage and skin types. Exp Dermatol. 23 (Suppl 1):7–12.
2014.PubMed/NCBI View Article : Google Scholar
|