1
|
Nishida Y, Tian S, Isberg B, Hayashi O, Tallstedt L and Lennerstrand G: Significance of orbital fatty tissue for exophthalmos in thyroid-associated ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 240:515–520. 2002.PubMed/NCBI View Article : Google Scholar
|
2
|
Higashiyama T, Nishida Y and Ohji M: Changes of orbital tissue volumes and proptosis in patients with thyroid extraocular muscle swelling after methylprednisolone pulse therapy. Jpn J Ophthalmol. 59:430–435. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Ohtsuka K, Sato A, Kawaguchi S, Hashimoto M and Suzuki Y: Effect of high-dose intravenous steroid pulse therapy followed by 3-month oral steroid therapy for Graves' ophthalmopathy. Jpn J Ophthalmol. 46:563–567. 2002.PubMed/NCBI View Article : Google Scholar
|
4
|
Prat MC, Braunstein AL, Dagi Glass LR and Kazim M: Orbital fat decompression for thyroid eye disease: Retrospective case review and criteria for optimal case selection. Ophthalmic Plast Reconstr Surg. 31:215–218. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Krönlein RU: Zur Pathologie und operativen behandlung der dermoidcysten der Orbita. Beitr Klin Chir. 4:149–163. 1889.
|
6
|
Zhang-Nunes SX, Dang S, Garneau HC, Garneau HC, Hwang C, Isaacs D, Chang SH and Goldberg R: Characterization and outcomes of repeat orbital decompression for thyroid-associated orbitopathy. Orbit. 34:57–65. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Bahn RS: Is orbital decompression a safe and effective treatment for Graves' orbitopathy? Nat Clin Pract Endocrinol Metab. 3:796–797. 2007.PubMed/NCBI View Article : Google Scholar
|
8
|
Boboridis KG, Uddin J, Mikropoulos DG, Bunce C, Mangouritsas G, Voudouragkaki IC and Konstas AG: Critical appraisal on orbital decompression for thyroid eye disease: A systematic review and literature search. Adv Ther. 32:595–611. 2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Bahn RS and Heufelder AE: Pathogenesis of Graves' ophthalmopathy. N Engl J Med. 329:1468–1475. 1993.
|
10
|
Lim SL, Lim AK, Mumtaz M, Hussein E, Wan Bebakar WM and Khir AS: Prevalence, risk factors, and clinical features of thyroid-associated ophthalmopathy in multiethnic Malaysian patients with Graves' disease. Thyroid. 18:1297–1301. 2008.PubMed/NCBI View Article : Google Scholar
|
11
|
Herbaut A, Liang H, Denoyer A, Baudouin C and Labbé A: Tear film analysis and evaluation of optical quality: A review of the literature (French translation of the article). J Fr Ophtalmol. 42:226–243. 2019.(In French). PubMed/NCBI View Article : Google Scholar
|
12
|
Zhou L and Beuerman RW: The power of tears: How tear proteomics research could revolutionize the clinic. Expert Rev Proteomics. 14:189–191. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Janssen PT and van Bijsterveld OP: Origin and biosynthesis of human tear fluid proteins. Invest Ophthalmol Vis. 24:623–630. 1983.PubMed/NCBI
|
14
|
Tsai PS, Evans JE, Green KM, Sullivan RM, Schaumberg DA, Richards SM, Dana MR and Sullivan DA: Proteomic analysis of human meibomian gland secretions. Br J Ophthalmol. 90:372–377. 2006.PubMed/NCBI View Article : Google Scholar
|
15
|
Ji YW, Lee JL, Kang HG, Gu N, Byun H, Yeo A, Noh H, Kim S, Choi EY, Song JS and Lee HK: Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease. Ocul Surf. 16:306–313. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Kishazi E, Dor M, Eperon S, Oberic A, Hamedani M and Turck N: Thyroid-associated orbitopathy and tears: A proteomics study. J Proteomics. 170:110–116. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Aass C, Norheim I, Eriksen EF, Børnick EC, Thorsby PM and Pepaj M: Comparative proteomic analysis of tear fluid in Graves' disease with and without orbitopathy. Clin Endocrinol (Oxf). 85:805–812. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Choi W, Li Y, Ji YS and Yoon KC: Oxidative stress markers in tears of patients with Graves' orbitopathy and their correlation with clinical activity score. BMC Ophthalmol. 18(303)2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Edina K, Marianne D, Simone E, Oberic A, Turck N and Hamedani M: Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy. Sci Rep. 8(10792)2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Matheis N, Grus FH, Breitenfeld M, Knych I, Funke S, Pitz S, Ponto KA, Pfeiffer N and Kahaly GJ: Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest Opth Vis Sci. 56:2649–2656. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Chng CL, Seah LL, Yang M, Shen SY, Koh SK, Gao Y, Deng L, Tong L, Beuerman RW and Zhou L: Proteins calcium binding protein A4 (S100A4) and prolactin induced protein (PIP) are potential biomarkers for thyroid eye disease. Sci Rep. 8(16936)2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Yang M, Chung Y, Lang S, Yawata N, Seah LL and Looi A: The tear cytokine profile in patients with active Graves' orbitopathy. Endocrine. 59:402–409. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Ji Y, Qian Z, Dong Y, Zhou H and Fan X: Quantitative morphometry of the orbit in Chinese adults based on a three-dimensional reconstruction method. J Anat. 217:501–506. 2010.PubMed/NCBI View Article : Google Scholar
|
24
|
Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD and Reis BL: Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 118:615–621. 2000.PubMed/NCBI View Article : Google Scholar
|
25
|
Jiang L and Wei R: Analysis of Graves' ophthalmopathy patients' tear protein spectrum. Chin Med J (Engl). 126:4493–4498. 2013.PubMed/NCBI
|
26
|
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS and Lynn DJ: InnateDB: Systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic Acids Res. 41 (Database Issue):D1228–D1233. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, et al: The reactome pathway knowledgebase. Nucleic Acids Res. 48 (D1):D498–D503. 2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Haynes W: Benjamini-Hochberg Method. In: Dubitzky W, Wolkenhauer O, Cho KH and Yokota H (eds). Encyclopedia of Systems Biology. Springer, New York, NY, 2013.
|
29
|
Bautista EL: Inflammation, endothelial dysfunction, and the risk of high blood pressure: Epidemiologic and biological evidence. J Hum Hypertens. 17:223–230. 2003.PubMed/NCBI View Article : Google Scholar
|
30
|
Haefliger IO, Von Arx G and Pimentel AR: Pathophysiology of intraocular pressure increase and glaucoma prevalence in thyroid eye disease: A mini-review. Klin Monbl Augenheilkd. 227:292–293. 2010.PubMed/NCBI View Article : Google Scholar
|
31
|
Klein R, Klein BE, Knudtson MD, Wong TY and Tsai MY: Are inflammatory factors related to retinal vessel caliber? The beaver dam eye study. Arch Ophthalmol. 124:87–94. 2006.PubMed/NCBI View Article : Google Scholar
|
32
|
Wall JR, Bernard N, Boucher A, Salvi M, Zhang ZG, Kennerdell J, Tyutyunikov A and Genovese C: Pathogenesis of thyroid-associated ophthalmopathy: An autoimmune disorder of the eye muscle associated with Graves' hyperthyroidism and Hashimoto's thyroiditis. Clin Immunol Immunopathol. 68:1–8. 1993.PubMed/NCBI View Article : Google Scholar
|
33
|
Hwang CJ, Afifiyan N, Sand D, Naik V, Said J, Pollock SJ, Chen B, Phipps RP, Goldberg RA, Smith TJ and Douglas RS: Orbital fibroblasts from patients with thyroid-associated ophthalmopathy overexpress CD40: CD154 hyperinduces IL-6, IL-8, and MCP-1. Invest Ophthalmol Vis Sci. 50:2262–2268. 2009.PubMed/NCBI View Article : Google Scholar
|
34
|
Hiromatsu Y, Yang D, Bednarczuk T, Miyake I, Nonaka K and Inoue Y: Cytokine profiles in eye muscle tissue and orbital fat tissue from patients with thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 85:1194–1199. 2000.PubMed/NCBI View Article : Google Scholar
|
35
|
Wahrenberg H, Wennlund A and Hoffstedt J: Increased adipose tissue secretion of interleukin-6, but not of leptin, plasminogen activator inhibitor-1 or tumour necrosis factor alpha, in Graves' hyperthyroidism. Eur J Endocrinol. 146:607–611. 2002.PubMed/NCBI View Article : Google Scholar
|
36
|
Kaback LA and Smith TJ: Expression of hyaluronan synthase messenger ribonucleic acids and their induction by interleukin-1beta in human orbital fibroblasts: Potential insight into the molecular pathogenesis of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab. 84:4079–4084. 1999.PubMed/NCBI View Article : Google Scholar
|
37
|
Khong JJ, McNab AA, Ebeling PR, Craig JE and Selva D: Pathogenesis of thyroid eye disease: Review and update on molecular mechanisms. Br J Ophthalmol. 100:142–150. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Ma R, Ren H, Xu B, Cheng Y, Gan L, Zhang R, Wu J and Qian J: PH20 inhibits TGFβ1-induced differentiation of perimysial orbital fibroblasts via hyaluronan-CD44 pathway in thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 60:1431–1441. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Areschoug T and Gordon S: Scavenger receptors: Role in innate immunity and microbial pathogenesis. Cell Microbiol. 11:1160–1169. 2009.PubMed/NCBI View Article : Google Scholar
|
40
|
Anderson CK and Miller OF III: Triad of exophthalmos, pretibial myxedema, and acropachy in a patient with Graves' disease. J Am Acad Dermatol. 48:970–972. 2003.PubMed/NCBI View Article : Google Scholar
|
41
|
Esteban JA: AMPA receptor trafficking: A road map for synaptic plasticity. Mol Interv. 3:375–385. 2003.PubMed/NCBI View Article : Google Scholar
|
42
|
Fowler JH, Mccracken E, Dewar D and McCulloch J: Intracerebral injection of AMPA causes axonal damage in vivo. Brain Res. 991:104–112. 2003.PubMed/NCBI View Article : Google Scholar
|
43
|
Nellgård B and Wieloch T: Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab. 12:2–11. 1992.PubMed/NCBI View Article : Google Scholar
|
44
|
Wu LQ, Mou P, Chen ZY, Cheng JW, Le QH Cai JP and Wei RL: Altered corneal nerves in chinese thyroid-associated ophthalmopathy patients observed by in vivo confocal microscopy. Med Sci Monit. 25:1024–1031. 2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Koga M, Hiromatsu Y, Jimi A, Inoue Y and Nonaka K: Possible involvement of Fas-mediated apoptosis in eye muscle tissue from patients with thyroid-associated ophthalmopathy. Thyroid. 8:311–318. 1998.PubMed/NCBI View Article : Google Scholar
|
46
|
Zoukhri D, Fix A, Alroy J and Kublin CL: Mechanisms of murine lacrimal gland repair after experimentally induced inflammation. Invest Ophthalmol Vis Sci. 49:4399–4406. 2008.PubMed/NCBI View Article : Google Scholar
|
47
|
Humphreys-Beher MG, Peck AB, Dang H and Talal N: The role of apoptosis in the initiation of the autoimmune response in Sjögren's syndrome. Clin Exp Immunol. 116:383–387. 1999.PubMed/NCBI View Article : Google Scholar
|
48
|
Zoukhri D: Mechanisms involved in injury and repair of the murine lacrimal gland: Role of programmed cell death and mesenchymal stem cells. Ocul Surf. 8:60–69. 2010.PubMed/NCBI View Article : Google Scholar
|
49
|
Smith TJ, Kahaly GJ, Ezra DG, Fleming JC, Dailey RA, Tang RA, Harris GJ, Antonelli A, Salvi M, Goldberg RA, et al: Teprotumumab for thyroid-associated ophthalmopathy. N Engl J Med. 376:1748–1761. 2017.PubMed/NCBI View Article : Google Scholar
|