1
|
Bielack S, Carrle D and Casali PG: ESMO
Guidelines Working Group. Osteosarcoma: ESMO clinical
recommendations for diagnosis, treatment and follow-up. Ann Oncol.
20 (Suppl 4):137–139. 2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Camuzard O, Santucci-Darmanin S, Carle GF
and Pierrefite-Carle V: Role of autophagy in osteosarcoma. J Bone
Oncol. 16(100235)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Yao Z, Han L, Chen Y, He F, Sun B, Kamar
S, Zhang Y, Yang Y, Wang C and Yang Z: Hedgehog signalling in the
tumourigenesis and metastasis of osteosarcoma, and its potential
value in the clinical therapy of osteosarcoma. Cell Death Dis.
9(701)2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Sasaki R, Osaki M and Okada F:
MicroRNA-Based Diagnosis and Treatment of Metastatic Human
Osteosarcoma. Cancers (Basel). 11(11)2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Anninga JK, Gelderblom H, Fiocco M, Kroep
JR, Taminiau AH, Hogendoorn PC and Egeler RM: Chemotherapeutic
adjuvant treatment for osteosarcoma: Where do we stand? Eur J
Cancer. 47:2431–2445. 2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Tang QX, Wang LC, Wang Y, Gao HD and Hou
ZL: Efficacy of methotrexate, doxorubicin, and cisplatin for
osteosarcoma: Study protocol for a systematic review of randomized
controlled trial. Medicine (Baltimore). 98(e14442)2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Pang KL and Chin KY: Emerging Anticancer
Potentials of Selenium on Osteosarcoma. Int J Mol Sci.
20(20)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Carina V, Costa V, Sartori M, Bellavia D,
De Luca A, Raimondi L, Fini M and Giavaresi G: Adjuvant Biophysical
Therapies in Osteosarcoma. Cancers (Basel). 11(11)2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Remsburg C, Konrad K, Sampilo NF and Song
JL: Analysis of microRNA functions. Methods Cell Biol. 151:323–334.
2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Ichiyama K and Dong C: The role of miR-183
cluster in immunity. Cancer Lett. 443:108–114. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Akhtar MM, Micolucci L, Islam MS, Olivieri
F and Procopio AD: Bioinformatic tools for microRNA dissection.
Nucleic Acids Res. 44:24–44. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297.
2004.PubMed/NCBI View Article : Google Scholar
|
13
|
Fabian MR and Sonenberg N: The mechanics
of miRNA-mediated gene silencing: A look under the hood of miRISC.
Nat Struct Mol Biol. 19:586–593. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Cheng WC, Liao TT, Lin CC, Yuan LE, Lan
HY, Lin HH, Teng HW, Chang HC, Lin CH, Yang CY, et al:
RAB27B-activated secretion of stem-like tumor exosomes delivers the
biomarker microRNA-146a-5p, which promotes tumorigenesis and
associates with an immunosuppressive tumor microenvironment in
colorectal cancer. Int J Cancer. 145:2209–2224. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Di Cosimo S, Appierto V, Pizzamiglio S,
Tiberio P, Iorio MV, Hilbers F, de Azambuja E, de la Peña L,
Izquierdo M, Huober J, et al: Plasma miRNA Levels for Predicting
Therapeutic Response to Neoadjuvant Treatment in HER2-positive
Breast Cancer: Results from the NeoALTTO Trial. Clin Cancer Res.
25:3887–3895. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Yang Y, Ishak Gabra MB, Hanse EA, Lowman
XH, Tran TQ, Li H, Milman N, Liu J, Reid MA, Locasale JW, et al:
miR-135 suppresses glycolysis and promotes pancreatic cancer cell
adaptation to metabolic stress by targeting phosphofructokinase-1.
Nat Commun. 10(809)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Tan Y, Chen L, Li S, Hao H and Zhang D:
miR-384 Inhibits Malignant Biological Behavior Such as
Proliferation and Invasion of Osteosarcoma by Regulating IGFBP3.
Technol Cancer Res Treat. 19(1533033820909125)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q,
Wang H, Wang J, Zhou Q, Wei L, et al: MicroRNA-200a induces
immunosuppression by promoting PTEN-mediated PD-L1 upregulation in
osteosarcoma. Aging (Albany NY). 12:1213–1236. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Cui HB, Ge HE, Wang YS and Bai XY:
miR-208a enhances cell proliferation and invasion of gastric cancer
by targeting SFRP1 and negatively regulating MEG3. Int J Biochem
Cell Biol. 102:31–39. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He
Y, Chen G, Zhou Q, Wang W, Zhou X, et al: Erratum to:
Radiation-induced miR-208a increases the proliferation and
radioresistance by targeting p21 in human lung cancer cells. J Exp
Clin Cancer Res. 35(20)2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Zou Y, Zheng S, Xiao W and Xie X, Yang A,
Gao G, Xiong Z, Xue Z, Tang H and Xie X: circRAD18 sponges
miR-208a/3164 to promote triple-negative breast cancer progression
through regulating IGF1 and FGF2 expression. Carcinogenesis.
40:1469–1479. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Yin K, Liu M, Zhang M, Wang F, Fen M, Liu
Z, Yuan Y, Gao S, Yang L, Zhang W, et al: miR-208a-3p suppresses
cell apoptosis by targeting PDCD4 in gastric cancer. Oncotarget.
7:67321–67332. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Wu H, Xu L, Chen Y and Xu C: miR-208a-3p
functions as an oncogene in colorectal cancer by targeting PDCD4.
Biosci Rep. 39(39)2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Ahmed G, Zamzam M, Kamel A, Ahmed S,
Salama A, Zaki I, Kamal N and Elshafiey M: Effect of timing of
pulmonary metastasis occurrence on the outcome of metastasectomy in
osteosarcoma patients. J Pediatr Surg. 54:775–779. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Huang Y, Zhang J, Shao H, Liu J, Jin M,
Chen J and Zhao H: miR-33a Mediates the Anti-Tumor Effect of
Lovastatin in Osteosarcoma by Targeting CYR61. Cell Physiol
Biochem. 51:938–948. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang X, Peng L, Gong X, Zhang X, Sun R and
Du J: miR-423-5p Inhibits Osteosarcoma Proliferation and Invasion
Through Directly Targeting STMN1. Cell Physiol Biochem.
50:2249–2259. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Jiang B, Mu W, Wang J, Lu J, Jiang S, Li
L, Xu H and Tian H: MicroRNA-138 functions as a tumor suppressor in
osteosarcoma by targeting differentiated embryonic chondrocyte gene
2. J Exp Clin Cancer Res. 35(69)2016.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhou Y, Huang Z, Wu S, Zang X, Liu M and
Shi J: miR-33a is up-regulated in chemoresistant osteosarcoma and
promotes osteosarcoma cell resistance to cisplatin by
down-regulating TWIST. J Exp Clin Cancer Res. 33(12)2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Wang JW, Wu XF, Gu XJ and Jiang XH:
Exosomal miR-1228 From Cancer-Associated Fibroblasts Promotes Cell
Migration and Invasion of Osteosarcoma by Directly Targeting SCAI.
Oncol Res. 27:979–986. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Wang L, Ye N, Lian X, Peng F, Zhang H and
Gong H: miR-208a-3p aggravates autophagy through the PDCD4-ATG5
pathway in Ang II-induced H9c2 cardiomyoblasts. Biomed
Pharmacother. 98:1–8. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Li S, Jiang Z, Wen L, Feng G and Zhong G:
MicroRNA-208a-3p contributes to connexin40 remolding in human
chronic atrial fibrillation. Exp Ther Med. 14:5355–5362.
2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Cai B, Pan Z and Lu Y: The roles of
microRNAs in heart diseases: A novel important regulator. Curr Med
Chem. 17:407–411. 2010.PubMed/NCBI View Article : Google Scholar
|
34
|
Zhang S, Zhang R, Wu F and Li X:
MicroRNA-208a Regulates H9c2 Cells Simulated Ischemia-Reperfusion
Myocardial Injury via Targeting CHD9 through Notch/NF-kappa B
Signal Pathways. Int Heart J. 59:580–588. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Callis TE, Pandya K, Seok HY, Tang RH,
Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, et al:
MicroRNA-208a is a regulator of cardiac hypertrophy and conduction
in mice. J Clin Invest. 119:2772–2786. 2009.PubMed/NCBI View Article : Google Scholar
|
36
|
Moses C, Nugent F, Waryah CB, Garcia-Bloj
B, Harvey AR and Blancafort P: Activating PTEN Tumor Suppressor
Expression with the CRISPR/dCas9 System. Mol Ther Nucleic Acids.
14:287–300. 2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Tu J, Cheung HH, Lu G, Chen Z and Chan WY:
MicroRNA-10a promotes granulosa cells tumor development via
PTEN-AKT/Wnt regulatory axis. Cell Death Dis.
9(1076)2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Lee YR, Chen M and Pandolfi PP: The
functions and regulation of the PTEN tumour suppressor: New modes
and prospects. Nat Rev Mol Cell Biol. 19:547–562. 2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Patsouris A, Augereau P, Frenel JS, Robert
M, Gourmelon C, Bourbouloux E, Berton-Rigaud D, Chevalier LM and
Campone M: Benefits versus risk profile of buparlisib for the
treatment of breast cancer. Expert Opin Drug Saf. 18:553–562.
2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Abou-Ouf H, Ghosh S, Box A, Palanisamy N
and Bismar TA: Combined loss of TFF3 and PTEN is associated with
lethal outcome and overall survival in men with prostate cancer. J
Cancer Res Clin Oncol. 145:1751–1759. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Ling C, Wang X, Zhu J, Tang H, Du W, Zeng
Y, Sun L, Huang JA and Liu Z: MicroRNA-4286 promotes cell
proliferation, migration, and invasion via PTEN regulation of the
PI3K/Akt pathway in non-small cell lung cancer. Cancer Med.
8:3520–3531. 2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Yu C, Zhang B, Li YL and Yu XR: SIX1
reduces the expression of PTEN via activating PI3K/AKT signal to
promote cell proliferation and tumorigenesis in osteosarcoma.
Biomed Pharmacother. 105:10–17. 2018.PubMed/NCBI View Article : Google Scholar
|