1
|
Ostrom QT, Cioffi G, Gittleman H, Patil N,
Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS Statistical
Report: Primary Brain and Other Central Nervous System Tumors
Diagnosed in the United States in 2012-2016. Neuro-oncol. 21 (Suppl
5):v1–v100. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Stupp R, Taillibert S, Kanner AA, Kesari
S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink
KL, et al: Maintenance therapy with tumor-treating fields plus
temozolomide vs temozolomide alone for glioblastoma: a randomized
clinical trial. JAMA. 314:2535–2543. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Komori T: The 2016 WHO Classification of
Tumours of the Central Nervous System: The Major Points of
Revision. Neurol Med Chir (Tokyo). 57:301–311. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Ameratunga M, Pavlakis N, Wheeler H, Grant
R, Simes J and Khasraw M: Anti-angiogenic therapy for high-grade
glioma. Cochrane Database Syst Rev. 11(CD008218)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Blumenthal DT, Kanner AA, Aizenstein O,
Cagnano E, Greenberg A, Hershkovitz D, Ram Z and Bokstein F:
Surgery for Recurrent High-Grade Glioma After Treatment with
Bevacizumab. World Neurosurg. 110:e727–e737. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
El Hallani S, Boisselier B, Peglion F,
Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas JL,
Eichmann A, et al: A new alternative mechanism in glioblastoma
vascularization: Tubular vasculogenic mimicry. Brain. 133:973–982.
2010.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen YS and Chen ZP: Vasculogenic mimicry:
A novel target for glioma therapy. Chin J Cancer. 33:74–79.
2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Zou M, Zhu W, Wang L, Shi L, Gao R, Ou Y,
Chen X, Wang Z, Jiang A, Liu K, et al: AEG-1/MTDH-activated
autophagy enhances human malignant glioma susceptibility to
TGF-β1-triggered epithelial-mesenchymal transition. Oncotarget.
7:13122–13138. 2016.
|
9
|
Noch E, Bookland M and Khalili K:
Astrocyte-elevated gene-1 (AEG-1) induction by hypoxia and glucose
deprivation in glioblastoma. Cancer Biol Ther. 11:32–39.
2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Yang Y, Wu J, Guan H, Cai J, Fang L, Li J
and Li M: MiR-136 promotes apoptosis of glioma cells by targeting
AEG-1 and Bcl-2. FEBS Lett. 586:3608–3612. 2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
12
|
Liang C, Guo S and Yang L: Effects of all
trans retinoic acid on VEGF and HIF 1α expression in glioma cells
under normoxia and hypoxia and its anti angiogenic effect in an
intracerebral glioma model. Mol Med Rep. 10:2713–2719.
2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Francescone RA, Faibish M and Shao R: A
matrigel-based tube formation assay to assess the vasculogenic
activity of tumor cells. J Vis Exp. 55(e3040)2011.PubMed/NCBI View
Article : Google Scholar
|
14
|
Hernández de la Cruz ON, López-González
JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA,
Aguilar-Cazares D, López-Camarillo C and Carlos-Reyes Á: Regulation
networks driving vasculogenic mimicry in solid tumors. Front Oncol.
9(1419)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh
I, Mukherji D, Temraz S and Shamseddine A: Resistance Mechanisms to
Anti-angiogenic Therapies in Cancer. Front Oncol.
10(221)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Wu HB, Yang S, Weng HY, Chen Q, Zhao XL,
Fu WJ, Niu Q, Ping YF, Wang JM, Zhang X, et al: Autophagy-induced
KDR/VEGFR-2 activation promotes the formation of vasculogenic
mimicry by glioma stem cells. Autophagy. 13:1528–1542.
2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Ge H and Luo H: Overview of advances in
vasculogenic mimicry - a potential target for tumor therapy. Cancer
Manag Res. 10:2429–2437. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Xu X, Jia R, Zhou Y, Song X and Fan X:
Investigation of vasculogenic mimicry in sebaceous carcinoma of the
eyelid. Acta Ophthalmol. 88:e160–e164. 2010.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang Z, Han Y, Zhang K and Teng L:
Investigation of vasculogenic mimicry in intracranial
hemangiopericytoma. Mol Med Rep. 4:1295–1298. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Robertson FM, Simeone AM, Lucci A,
McMurray JS, Ghosh S and Cristofanilli M: Differential regulation
of the aggressive phenotype of inflammatory breast cancer cells by
prostanoid receptors EP3 and EP4. Cancer. 116 (Suppl):2806–2814.
2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Hendrix MJ, Seftor EA, Hess AR and Seftor
RE: Vasculogenic mimicry and tumour-cell plasticity: Lessons from
melanoma. Nat Rev Cancer. 3:411–421. 2003.PubMed/NCBI View
Article : Google Scholar
|
22
|
Seftor RE, Seftor EA, Koshikawa N, Meltzer
PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V and
Hendrix MJ: Cooperative interactions of laminin 5 gamma2 chain,
matrix metalloproteinase-2, and membrane
type-1-matrix/metalloproteinase are required for mimicry of
embryonic vasculogenesis by aggressive melanoma. Cancer Res.
61:6322–6327. 2001.PubMed/NCBI
|
23
|
Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu
D, Yu X and Tian Y: Advanced research on vasculogenic mimicry in
cancer. J Cell Mol Med. 19:315–326. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Hess AR, Seftor EA, Seftor RE and Hendrix
MJ: Phosphoinositide 3-kinase regulates membrane type 1-matrix
metalloproteinase (MMP) and MMP-2 activity during melanoma cell
vasculogenic mimicry. Cancer Res. 63:4757–4762. 2003.PubMed/NCBI
|
25
|
Liu Y, Li F, Yang YT, Xu XD, Chen JS, Chen
TL, Chen HJ, Zhu YB, Lin JY, Li Y, et al: IGFBP2 promotes
vasculogenic mimicry formation via regulating CD144 and MMP2
expression in glioma. Oncogene. 38:1815–1831. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Bai R, Ding T, Zhao J, Liu S, Zhang L, Lan
X, Yu Y and Yin L: The effect of PI3K inhibitor LY294002 and
gemcitabine hydrochloride combined with ionizing radiation on the
formation of vasculogenic mimicry of Panc-1 cells in vitro and in
vivo. Neoplasma. 63:80–92. 2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang S, Li M, Gu Y, Liu Z, Xu S, Cui Y
and Sun B: Thalidomide influences growth and vasculogenic mimicry
channel formation in melanoma. J Exp Clin Cancer Res.
27(60)2008.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang JY, Sun T, Zhao XL, Zhang SW, Zhang
DF, Gu Q, Wang XH, Zhao N, Qie S and Sun BC: Functional
significance of VEGF-a in human ovarian carcinoma: Role in
vasculogenic mimicry. Cancer Biol Ther. 7:758–766. 2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Qin L, Ren Y, Chen AM, Guo FJ, Xu F, Gong
C, Cheng P, Du Y and Liao H: Peroxisome proliferator-activated
receptor γ ligands inhibit VEGF-mediated vasculogenic mimicry of
prostate cancer through the AKT signaling pathway. Mol Med Rep.
10:276–282. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Mei J, Gao Y, Zhang L, Cai X, Qian Z,
Huang H and Huang W: VEGF-siRNA silencing induces apoptosis,
inhibits proliferation and suppresses vasculogenic mimicry in
osteosarcoma in vitro. Exp Oncol. 30:29–34. 2008.PubMed/NCBI
|
31
|
Yu JQ, Zhou Q, Zhu H, Zheng FY and Chen
ZW: Overexpression of astrocyte elevated gene-1 (AEG-1) in cervical
cancer and its correlation with angiogenesis. Asian Pac J Cancer
Prev. 16:2277–2281. 2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Huang LL, Wang Z, Cao CJ, Ke ZF, Wang F,
Wang R, Luo CQ, Lu X and Wang LT: AEG-1 associates with metastasis
in papillary thyroid cancer through upregulation of MMP2/9. Int
JOncol. 51:812–822. 2017.PubMed/NCBI View Article : Google Scholar
|