1
|
Ko JY, Lee MS, Lian WS, Weng WT, Sun YC,
Chen YS and Wang FS: MicroRNA-29a counteracts synovitis in knee
osteoarthritis pathogenesis by targeting VEGF. Sci Rep.
7(3584)2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Huskisson EC: Modern management of
mild-to-moderate joint pain due to osteoarthritis: A holistic
approach. J Int Med Res. 38:1175–1212. 2010.PubMed/NCBI View Article : Google Scholar
|
3
|
Goggs R, Carter SD, Schulzetanzil G,
Shakibaei M and Mobasheri A: Apoptosis and the loss of chondrocyte
survival signals contribute to articular cartilage degradation in
osteoarthritis. Vet J. 166:140–158. 2003.PubMed/NCBI View Article : Google Scholar
|
4
|
Papanagnou P, Stivarou T and Tsironi M:
The role of miRNAs in common inflammatory arthropathies:
Osteoarthritis and gouty arthritis. Biomolecules.
6(44)2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Crowe N, Swingler TE, Le LT, Barter MJ,
Wheeler G, Pais H, Donell ST, Young DA, Dalmay T and Clark IM:
Detecting new microRNAs in human osteoarthritic chondrocytes
identifies miR-3085 as a human, chondrocyte-selective, microRNA.
Osteoarthritis Cartilage. 24:534–543. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
7
|
Tornero-Esteban P, Rodríguez-Rodríguez L,
Abásolo L, Tomé M, López-Romero P, Herranz E, González MA, Marco F,
Moro E, Fernández-Gutiérrez B and Lamas JR: Signature of microRNA
expression during osteogenic differentiation of bone marrow MSCs
reveals a putative role of miR-335-5P in osteoarthritis. BMC
Musculoskelet Disord. 16:182–190. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Mirzamohammadi F, Papaioannou G and
Kobayashi T: microRNAs in cartilage development, homeostasis, and
disease. Curr Osteoporos Rep. 12:410–419. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Steck E, Boeuf S, Gabler J, Werth N,
Schnatzer P, Diederichs S and Richter W: Regulation of H19 and its
encoded microRNA-675 in osteoarthritis and under anabolic and
catabolic in vitro conditions. J Mol Med (Berl). 90:1185–1195.
2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004.PubMed/NCBI View Article : Google Scholar
|
11
|
Negrini M and Calin GA: Breast cancer
metastasis: A microRNA story. Breast Cancer Res. 10:203–206.
2008.PubMed/NCBI View
Article : Google Scholar
|
12
|
Tomé M, López-Romero P, Albo C, Sepúlveda
JC, Fernández-Gutiérrez B, Dopazo A, Bernad A and González MA:
miR-335 orchestrates cell proliferation, migration and
differentiation in human mesenchymal stem cells. Cell Death Differ.
18:985–995. 2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Kopańska M, Szala D, Czech J, Gabło N,
Gargasz K, Trzeciak M, Zawlik I and Snela S: miRNA expression in
the cartilage of patients with osteoarthritis. J Orthop Surg Res.
12(51)2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou
X and Wu Q: miR-335-5P promotes chondrogenesis in mouse mesenchymal
stem cells and is regulated through two positive feedback loops. J
Bone Miner Res. 29:1575–1585. 2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhang J, Tu Q, Bonewald LF, He X, Stein G,
Lian J and Chen J: Effects of miR-335-5P in modulating osteogenic
differentiation by specifically downregulating Wnt antagonist DKK1.
J Bone Miner Res. 26:1953–1963. 2011.PubMed/NCBI View
Article : Google Scholar
|
16
|
Yates KE, Shortkroff S and Reish RG: Wnt
influence on chondrocyte differentiation and cartilage function.
DNA Cell Biol. 24:446–457. 2005.PubMed/NCBI View Article : Google Scholar
|
17
|
Sampson EM, Haque ZK, Ku MC, Tevosian SG,
Albanese C, Pestell RG, Paulson KE and Yee AS: Negative regulation
of the Wnt-beta-catenin pathway by the transcriptional repressor
HBP1. EMBO J. 20:4500–4511. 2014.PubMed/NCBI View Article : Google Scholar
|
18
|
Paulson KE, Riegerchrist K, Mcdevitt MA,
Kuperwasser C, Kim J, Unanue VE, Zhang X, Hu M, Ruthazer R, Berasi
SP, et al: Alterations of the HBP1 transcriptional repressor are
associated with invasive breast cancer. Cancer Res. 67:6136–6145.
2007.PubMed/NCBI View Article : Google Scholar
|
19
|
Yee AS, Paulson EK, Mcdevitt MA,
Rieger-Christ K, Summerhayes I, Berasi SP, Kim J, Huang CY and
Zhang X: The HBP1 transcriptional repressor and the p38 MAP kinase:
Unlikely partners in G1 regulation and tumor suppression. Gene.
336:1–13. 2004.PubMed/NCBI View Article : Google Scholar
|
20
|
Chen YC, Zhang XW, Niu XH, Xin DQ, Zhao
WP, Na YQ and Mao ZB: Macrophage migration inhibitory factor is a
direct target of HBP1-mediated transcriptional repression that is
overexpressed in prostate cancer. Oncogene. 29:3067–3078.
2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Raine EV, Wreglesworth N, Dodd AW, Reynard
LN and Loughlin J: Gene expression analysis reveals HBP1 as a key
target for the osteoarthritis susceptibility locus that maps to
chromosome 7q22. Ann Rheum Dis. 71:2020–2027. 2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Berasi SP, Xiu M, Yee AS and Paulson KE:
HBP1 repression of the p47phox gene: Cell cycle regulation via the
NADPH oxidase. Mol Cell Biol. 24:3011–3024. 2004.PubMed/NCBI View Article : Google Scholar
|
23
|
Grishko VI, Ho R, Wilson GL and Pearsall
AW IV: Diminished mitochondrial DNA integrity and repair capacity
in OA chondrocytes. Osteoarthritis Cartilage. 17:107–113.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Stanczyk J, Kowalski ML, Grzegorczyk J,
Szkudlinska B, Jarzebska M, Marciniak M and Synder M: RANTES and
chemotactic activity in synovial fluids from patients with
rheumatoid arthritis and osteoarthritis. Mediators Inflamm.
2005:343–348. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Aikawa C, Nozawa T, Maruyama F, Tsumoto K,
Hamada S and Nakagawa I: Reactive oxygen species induced by
Streptococcus pyogenes invasion trigger apoptotic cell death in
infected epithelial cells. Cell Microbiol. 12:814–830.
2010.PubMed/NCBI View Article : Google Scholar
|
26
|
Huang Z, Li J, Du S, Chen G, Qi Y, Huang
L, Xiao L and Tong P: Effects of UCP4 on the proliferation and
apoptosis of chondrocytes: Its possible involvement and regulation
in osteoarthritis. PLoS One. 11(e0150684)2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Yu SM and Kim SJ: Production of reactive
oxygen species by withaferin A causes loss of type collagen
expression and COX-2 expression through the PI3K/Akt, p38, and JNK
pathways in rabbit articular chondrocytes. Exp Cell Res.
319:2822–2834. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Lepetsos P and Papavassiliou AG:
ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys
Acta. 1862:576–591. 2016.PubMed/NCBI View Article : Google Scholar
|