1
|
Liao J, Wang J, Liu Y, Li J and Duan L:
Transcriptome sequencing of lncRNA, miRNA, mRNA and interaction
network constructing in coronary heart disease. BMC Med Genomics.
12(124)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Agha G, Mendelson MM, Ward-Caviness CK,
Joehanes R, Huan TX, Gondalia R, Salfati E, Brody JA, Fiorito G,
Bressler J, et al: Blood leukocyte DNA methylation predicts risk of
future myocardial infarction and coronary heart disease.
Circulation. 140:645–657. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhou M, Bao Y, Li H, Pan Y, Shu L, Xia Z,
Wu D, Lam KSL, Vanhoutte PM, Xu A, et al: Deficiency of adipocyte
fatty-acid-binding protein alleviates myocardial
ischaemia/reperfusion injury and diabetes-induced cardiac
dysfunction. Clin Sci (Lond). 129:547–559. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Thygesen K, Alpert JS and White HD: Joint
ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial
Infarction. Universal definition of myocardial infarction. J Am
Coll Cardiol. 50:2173–2195. 2007.PubMed/NCBI View Article : Google Scholar
|
5
|
Winkler A, Jaguś-Jamioła A,
Uziębło-Życzkowska B, Orski Z, Krzyżanowski K, Smalc-Stasiak M and
Kiliszek M: Predictors of appropriate interventions and mortality
in patients with implantable cardioverter-defibrillators. Pol Arch
Intern Med. 129:667–672. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Yuan X, Dou Y, Wu X, Wei Z and Dai Y:
Tetrandrine, an agonist of aryl hydrocarbon receptor, reciprocally
modulates the activities of STAT3 and STAT5 to suppress Th17 cell
differentiation. J Cell Mol Med. 21:2172–2183. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Kwan CY, Ma FM and Hui SC: Inhibition of
endothelium-dependent vascular relaxation by tetrandrine. Life Sci.
64:2391–2400. 1999.PubMed/NCBI View Article : Google Scholar
|
8
|
Liou JT, Lin CS, Liao YC, Ho LJ, Yang SP
and Lai JH: JNK/AP-1 activation contributes to tetrandrine
resistance in T-cell acute lymphoblastic leukaemia. Acta Pharmacol
Sin. 38:1171–1183. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Sakurai Y, Kolokoltsov AA, Chen CC,
Tidwell MW, Bauta WE, Klugbauer N, Grimm C, Wahl-Schott C, Biel M
and Davey RA: Ebola virus. Two-pore channels control Ebola virus
host cell entry and are drug targets for disease treatment.
Science. 347:995–998. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang J, Yu B, Zhang XQ, Sheng ZF, Li SJ,
Wang ZJ, Cui XY, Cui SY and Zhang YH: Tetrandrine, an
antihypertensive alkaloid, improves the sleep state of
spontaneously hypertensive rats (SHRs). J Ethnopharmacol.
151:729–732. 2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Lee YS, Han SH, Lee SH, Kim YG, Park CB,
Kang OH, Keum JH, Kim SB, Mun SH, Seo YS, et al: The mechanism of
antibacterial activity of tetrandrine against Staphylococcus
aureus. Foodborne Pathog Dis. 9:686–691. 2012.PubMed/NCBI View Article : Google Scholar
|
12
|
Yu M, Liu T, Chen Y, Li Y and Li W:
Combination therapy with protein kinase inhibitor H89 and
Tetrandrine elicits enhanced synergistic antitumor efficacy. J Exp
Clin Cancer Res. 37(114)2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Westra IM, Oosterhuis D, Groothuis GM and
Olinga P: Precision-cut liver slices as a model for the early onset
of liver fibrosis to test antifibrotic drugs. Toxicol Appl
Pharmacol. 274:328–338. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Ohta T, Yasuda W, Hasegawa A, Ito S and
Nakazato Y: Effects of inhibitors for tyrosine kinase and
non-selective cation channel on capacitative Ca(2+) entry in rat
ileal smooth muscle. Eur J Pharmacol. 387:211–220. 2000.PubMed/NCBI View Article : Google Scholar
|
15
|
Shen DF, Tang QZ, Yan L, Zhang Y, Zhu LH,
Wang L, Liu C, Bian ZY and Li H: Tetrandrine blocks cardiac
hypertrophy by disrupting reactive oxygen species-dependent ERK1/2
signalling. Br J Pharmacol. 159:970–981. 2010.PubMed/NCBI View Article : Google Scholar
|
16
|
Ai J, Gao HH, He SZ, Wang L, Luo DL and
Yang BF: Effects of matrine, artemisinin, tetrandrine on cytosolic
[Ca2+]i in guinea pig ventricular myocytes. Acta
Pharmacol Sin. 22:512–515. 2001.PubMed/NCBI
|
17
|
Pilz PM, Hamza O, Gidlöf O, Gonçalves IF,
Tretter EV, Trojanek S, Abraham D, Heber S, Haller PM, Podesser BK
and Kiss A: Remote ischemic perconditioning attenuates adverse
cardiac remodeling and preserves left ventricular function in a rat
model of reperfused myocardial infarction. Int J Cardiol.
285:72–79. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Peng L and Zhao Y, Li Y, Zhou Y, Li L, Lei
S, Yu S and Zhao Y: Effect of DJ-1 on the neuroprotection of
astrocytes subjected to cerebral ischemia/reperfusion injury. J Mol
Med (Berl). 97:189–199. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang TJ, Guo RX, Li X, Wang YW and Li YJ:
Tetrandrine cardioprotection in ischemia-reperfusion (I/R) injury
via JAK3/STAT3/Hexokinase II. Eur J Pharmacol. 813:153–160.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Sun M, Chen M, Dawood F, Zurawska U, Li
JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R and Liu
PP: Tumor necrosis factor-alpha mediates cardiac remodeling and
ventricular dysfunction after pressure overload state. Circulation.
115:1398–1407. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
O'Brien F, Venturi E and Sitsapesan R: The
ryanodine receptor provides high throughput Ca2+-release
but is precisely regulated by networks of associated proteins: A
focus on proteins relevant to phosphorylation. Biochem Soc Trans.
43:426–433. 2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Yano M, Kobayashi S, Kohno M, Doi M,
Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T,
et al: FKBP12.6-mediated stabilization of calcium-release channel
(ryanodine receptor) as a novel therapeutic strategy against heart
failure. Circulation. 107:477–484. 2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Landstrom AP, Dobrev D and Wehrens XHT:
Calcium signaling and cardiac arrhythmias. Circ Res. 120:1969–1993.
2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Peng W, Shen H, Wu J, Guo W, Pan X, Wang
R, Chen SR and Yan N: Structural basis for the gating mechanism of
the type 2 ryanodine receptor RyR2. Science.
354(aah5324)2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Rocchetti M, Sala L, Dreizehnter L, Crotti
L, Sinnecker D, Mura M, Pane LS, Altomare C, Torre E, Mostacciuolo
G, et al: Elucidating arrhythmogenic mechanisms of long-QT syndrome
CALM1-F142L mutation in patient-specific induced pluripotent stem
cell-derived cardiomyocytes. Cardiovascular Res. 113:531–541.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Fischer TH, Herting J, Tirilomis T, Renner
A, Neef S, Toischer K, Ellenberger D, Förster A, Schmitto JD,
Gummert J, et al: Ca2+/calmodulin-dependent protein
kinase II and protein kinase A differentially regulate sarcoplasmic
reticulum Ca2+ leak in human cardiac pathology.
Circulation. 128:970–981. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Huke S and Bers DM: Ryanodine receptor
phosphorylation at Serine. 2030, 2808 and 2814 in rat
cardiomyocytes. Biochem Biophys Res Commun. 376:80–85.
2008.PubMed/NCBI View Article : Google Scholar
|
28
|
MacMillan D: FK506 binding proteins:
Cellular regulators of intracellular Ca2+ signalling.
Eur J Pharmacol. 700:181–193. 2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Luo M and Anderson ME: Mechanisms of
altered Ca(2)(+) handling in heart failure. Circ Res. 113:690–708.
2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Yamamoto T, Yano M, Xu X, Uchinoumi H,
Tateishi H, Mochizuki M, Oda T, Kobayashi S, Ikemoto N and
Matsuzaki M: Identification of target domains of the cardiac
ryanodine receptor to correct channel disorder in failing hearts.
Circulation. 117:762–772. 2008.PubMed/NCBI View Article : Google Scholar
|
31
|
Sag CM, Wagner S and Maier LS: Role of
oxidants on calcium and sodium movement in healthy and diseased
cardiac myocytes. Free Radic Biol Med. 63:338–349. 2013.PubMed/NCBI View Article : Google Scholar
|
32
|
Huang T, Xu S, Deo R, Ma A, Li H, Ma K and
Gan X: Targeting the Ca(2+)/Calmodulin-dependent protein kinase II
by Tetrandrine in human liver cancer cells. Biochem Biophys Res
Commun. 508:1227–1232. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Wang B and Xiao JG: Effect of tetrandrine
on free intracellular calcium in cultured calf basilar artery
smooth muscle cells. Acta Pharmacol Sin. 23:1121–1126.
2002.PubMed/NCBI
|
34
|
Rao MR: Effects of tetrandrine on cardiac
and vascular remodeling. Acta Pharmacol Sin. 23:1075–1085.
2002.PubMed/NCBI
|
35
|
Pinelli A, Trivulzio S, Brenna S, Galmozzi
G and Rossoni G: Pretreatment with tetrandrine has protective
effects against isoproterenol-induced myocardial infarction in
rabbits. In Vivo. 24:265–270. 2010.PubMed/NCBI
|
36
|
Teng G, Svystonyuk D, Mewhort HE, Turnbull
JD, Belke DD, Duff HJ and Fedak PWM: Tetrandrine reverses human
cardiac myofibroblast activation and myocardial fibrosis. Am J
Physiol Heart Circ Physiol. 308:H1564–H1574. 2015.PubMed/NCBI View Article : Google Scholar
|