1
|
Marrouche NF, Brachmann J, Andresen D,
Siebels J, Boersma L, Jordaens L, Merkely B, Pokushalov E, Sanders
P, Proff J, et al: Catheter ablation for atrial fibrillation with
heart failure. N Engl J Med. 378:417–427. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Kalman JM, Sanders P, Rosso R and Calkins
H: Should we perform catheter ablation for asymptomatic atrial
fibrillation? Circulation. 136:490–499. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Zoni Berisso M, Landolina M, Ermini G,
Parretti D, Zingarini GL, Degli Esposti L, Cricelli C and Boriani
G: The cost of atrial fibrillation in Italy: A five-year analysis
of healthcare expenditure in the general population. From the
Italian survey of atrial fibrillation management (ISAF) study. Eur
Rev Med Pharmacol Sci. 21:175–183. 2017.PubMed/NCBI
|
4
|
Hu CY, Wang CY, Li JY, Ma J and Li ZQ:
Relationship between atrial fibrillation and heart failure. Eur Rev
Med Pharmacol Sci. 20:4593–4600. 2016.PubMed/NCBI
|
5
|
Yang S, Mei B, Feng K, Lin W, Chen G,
Liang M, Zhang X and Wu Z: Long-term results of surgical atrial
fibrillation radiofrequency ablation: Comparison of two methods.
Heart Lung Circ. 27:621–628. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhao L, Wang WYS and Yang X:
Anticoagulation in atrial fibrillation with heart failure. Heart
Fail Rev. 23:563–571. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Heijman J, Voigt N, Nattel S and Dobrev D:
Cellular and molecular electrophysiology of atrial fibrillation
initiation, maintenance, and progression. Circ Res. 114:1483–1499.
2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Schotten U, Dobrev D, Platonov P, Kottkamp
H and Hindricks G: Current controversies in determining the main
mechanisms of atrial fibrillation. J Intern Med. 279:428–438.
2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Liu H, Chen GX, Liang MY, Qin H, Rong J,
Yao JP and Wu ZK: Atrial fibrillation alters the microRNA
expression profiles of the left atria of patients with mitral
stenosis. BMC Cardiovasc Disord. 14(10)2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Yubing W, Yanping X, Zhiyu L, Weijie C, Li
S, Huaan D, Peilin X, Zengzhang L and Yuehui Y: Long-term outcome
of radiofrequency catheter ablation for persistent atrial
fibrillation. Medicine (Baltimore). 97(e11520)2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Dawson K, Wakili R, Ördög B, Clauss S,
Chen Y, Iwasaki Y, Voigt N, Qi XY, Sinner MF, Dobrev D, et al:
MicroRNA29: A mechanistic contributor and potential biomarker in
atrial fibrillation. Circulation. 127:1466–1475, 1475e1-28.
2013.PubMed/NCBI View Article : Google Scholar
|
12
|
McManus DD, Lin H, Tanriverdi K, Quercio
M, Yin X, Larson MG, Ellinor PT, Levy D, Freedman JE and Benjamin
EJ: Relations between circulating microRNAs and atrial
fibrillation: Data from the Framingham offspring study. Heart
Rhythm. 11:663–669. 2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Wang Y, Cai H, Li H, Gao Z and Song K:
Atrial overexpression of microRNA-27b attenuates angiotensin
II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum
Cell. 31:251–260. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Saxena A and Carninci P: Long non-coding
RNA modifies chromatin: Epigenetic silencing by long non-coding
RNAs. Bioessays. 33:830–839. 2011.PubMed/NCBI View Article : Google Scholar
|
15
|
Ruan Z, Sun X, Sheng H and Zhu L: Long
non-coding RNA expression profile in atrial fibrillation. Int J
Clin Exp Pathol. 8:8402–8410. 2015.PubMed/NCBI
|
16
|
Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao
YG, Zhao JM, Li S, Guo J, Sun HL and Li CQ: Construction and
analysis of cardiac hypertrophy-associated lncRNA-mRNA network
based on competitive endogenous RNA reveal functional lncRNAs in
cardiac hypertrophy. Oncotarget. 7:10827–10840. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Liang H, Pan Z, Zhao X, Liu L, Sun J, Su
X, Xu C, Zhou Y, Zhao D, Xu B, et al: lncRNA PFL contributes to
cardiac fibrosis by acting as a competing endogenous RNA of let-7d.
Theranostics. 8:1180–1194. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Chen G, Guo H, Song Y, Chang H, Wang S,
Zhang M and Liu C: Long non-coding RNA AK055347 is upregulated in
patients with atrial fibrillation and regulates mitochondrial
energy production in myocardiocytes. Mol Med Rep. 14:5311–5317.
2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Chen L, Yan KP, Liu XC, Wang W, Li C, Li M
and Qiu CG: Valsartan regulates TGF-β/Smads and TGF-β/p38 pathways
through lncRNA CHRF to improve doxorubicin-induced heart failure.
Arch Pharm Res. 41:101–109. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Su Y, Li L, Zhao S, Yue Y and Yang S: The
long noncoding RNA expression profiles of paroxysmal atrial
fibrillation identified by microarray analysis. Gene. 642:125–134.
2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Yu XJ, Zou LH, Jin JH, Xiao F, Li L, Liu
N, Yang JF and Zou T: Long noncoding RNAs and novel inflammatory
genes determined by RNA sequencing in human lymphocytes are
up-regulated in permanent atrial fibrillation. Am J Transl Res.
9:2314–2336. 2017.PubMed/NCBI
|
22
|
Chiang DY, Zhang M, Voigt N, Alsina KM,
Jakob H, Martin JF, Dobrev D, Wehrens XHT and Li N: Identification
of microRNA-mRNA dysregulations in paroxysmal atrial fibrillation.
Int J Cardiol. 184:190–197. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Paralkar VR, Taborda CC, Huang P, Yao Y,
Kossenkov AV, Prasad R, Luan J, Davies JO, Hughes JR, Hardison RC,
et al: Unlinking an lncRNA from its associated cis element.
Mol Cell. 62:104–110. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhou DD, Jiang YY, Yuan C and Shi C: A
study on expression and distribution of collagen in rheumatic heart
disease with atrial fibrillation. Guangdong Med J, 2017.
|
26
|
Gambini E, Perrucci GL, Bassetti B,
Spaltro G, Campostrini G, Lionetti MC, Pilozzi A, Martinelli F,
Farruggia A, DiFrancesco D, et al: Preferential myofibroblast
differentiation of cardiac mesenchymal progenitor cells in the
presence of atrial fibrillation. Transl Res. 192:54–67.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Mao T, Zhang J, Qiao Y, Liu B and Zhang S:
Uncovering synergistic mechanism of Chinese herbal medicine in the
treatment of atrial fibrillation with obstructive sleep apnea
hypopnea syndrome by network pharmacology. Evid Based Complement
Alternat Med. 2019(8691608)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Chong E, Chang SL, Hsiao YW, Singhal R,
Liu SH, Leha T, Lin WY, Hsu CP, Chen YC, Chen YJ, et al:
Resveratrol, a red wine antioxidant, reduces atrial fibrillation
susceptibility in the failing heart by PI3K/AKT/eNOS signaling
pathway activation. Heart Rhythm. 12:1046–1056. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Liu SH, Hsiao YW, Chong E, Singhal R, Fong
MC, Tsai YN, Hsu CP, Chen YC, Chen YJ, Chiou CW, et al: Rhodiola
inhibits atrial arrhythmogenesis in a heart failure model. J
Cardiovasc Electrophysiol. 27:1093–1101. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Mira YE, Muhuyati Lu WH, He PY, Liu ZQ and
Yang YC: TGF-β1 signal pathway in the regulation of inflammation in
patients with atrial fibrillation. Asian Pac J Trop Med.
6:999–1003. 2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Shen H, Wang J, Min J, Xi W, Gao Y, Yin L,
Yu Y, Liu K, Xiao J, Zhang YF and Wang ZN: Activation of
TGF-β1/α-SMA/Col I profibrotic pathway in fibroblasts by galectin-3
contributes to atrial fibrosis in experimental models and patients.
Cell Physiol Biochem. 47:851–863. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Fu H, Li G, Liu C, Li J, Wang X, Cheng L
and Liu T: Probucol prevents atrial remodeling by inhibiting
oxidative stress and TNF-α/NF-κB/TGF-β signal transduction pathway
in alloxan-induced diabetic rabbits. J Cardiovasc Electrophysiol.
26:211–222. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Verheule S, Sato T, Everett T IV, Engle
SK, Otten D, Rubart-Von Der Lohe M, Nakajima HO, Nakajima H, Field
LJ and Olgin JE: Increased vulnerability to atrial fibrillation in
transgenic mice with selective atrial fibrosis caused by
overexpression of TGF-beta1. Circ Res. 94:1458–1465.
2004.PubMed/NCBI View Article : Google Scholar
|
34
|
He X, Zhang K, Gao X, Li L, Tan H, Chen J
and Zhou Y: Rapid atrial pacing induces myocardial fibrosis by
down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels.
31:1696–1708. 2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Xie J, Tu T, Zhou S and Liu Q:
Transforming growth factor (TGF)-β1 signal pathway: A promising
therapeutic target for attenuating cardiac fibrosis. Int J Cardiol.
239(9)2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Cunnington RH, Nazari M and Dixon IM:
c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: New
targets for managing myofibroblast function and cardiac fibrosis.
Can J Physiol Pharmacol. 87:764–772. 2009.PubMed/NCBI View Article : Google Scholar
|
37
|
Järvinen TAH and Ruoslahti E: Generation
of a multi-functional, target organ-specific, anti-fibrotic
molecule by molecular engineering of the extracellular matrix
protein, decorin. Br J Pharmacol. 176:16–25. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Tan WL, Xu M, Liu Z, Wu TY, Yang Y, Luo J,
Yang J and Luo Y: HOTAIR inhibited intracellular Ca2+
via regulation of Cav1.2 channel in human cardiomyocytes. Cell Mol
Biol (Noisy-le-grand). 61:79–83. 2015.PubMed/NCBI
|
39
|
Baskin KK, Makarewich CA, DeLeon SM, Ye W,
Chen B, Beetz N, Schrewe H, Bassel-Duby R and Olson EN: MED12
regulates a transcriptional network of calcium-handling genes in
the heart. JCI Insight. 2(e91920)2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Li N, Chiang DY, Wang S, Wang Q, Sun L,
Voigt N, Respress JL, Ather S, Skapura DG, Jordan VK, et al:
Ryanodine receptor-mediated calcium leak drives progressive
development of an atrial fibrillation substrate in a transgenic
mouse model. Circulation. 129:1276–1285. 2014.PubMed/NCBI View Article : Google Scholar
|
41
|
Levin MD, Lu MM, Petrenko NB, Hawkins BJ,
Gupta TH, Lang D, Buckley PT, Jochems J, Liu F, Spurney CF, et al:
Melanocyte-like cells in the heart and pulmonary veins contribute
to atrial arrhythmia triggers. J Clin Invest. 119:3420–3436.
2009.PubMed/NCBI View Article : Google Scholar
|
42
|
Swyngedouw NE and Jickling GC: RNA as a
stroke biomarker. Fut Neurol. 12:71–78. 2017.
|
43
|
Zhang D, Chen X, Wang Q, Wu S, Zheng Y and
Liu X: Role of the MAPKs/TGF-β1/TRAF6 signaling pathway in
postoperative atrial fibrillation. PLoS One.
12(e0173759)2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Liu L, Geng J, Zhao H, Yun F, Wang X, Yan
S, Ding X, Li W, Wang D, Li J, et al: Valsartan reduced atrial
fibrillation susceptibility by inhibiting atrial parasympathetic
remodeling through MAPKs/neurturin pathway. Cell Physiol Biochem.
36:2039–2050. 2015.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhao Y, Yuan Y and Qiu C: Underexpression
of CACNA1C caused by overexpression of microRNA-29a underlies the
pathogenesis of atrial fibrillation. Med Sci Monit. 22:2175–2181.
2016.PubMed/NCBI View Article : Google Scholar
|