1
|
Clark T, Maximin S, Meier J, Pokharel S
and Bhargava P: Hepatocellular carcinoma: Review of epidemiology,
screening, imaging diagnosis, response assessment, and treatment.
Curr Probl Diagn Radiol. 44:479–486. 2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Wallace MC, Preen D, Jeffrey GP and Adams
LA: The evolving epidemiology of hepatocellular carcinoma: A global
perspective. Expert Rev Gastroenterol Hepatol. 9:765–779.
2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Oliveri RS, Wetterslev J and Gluud C:
Hepatocellular carcinoma. Lancet. 380:470–471. 2012.PubMed/NCBI View Article : Google Scholar
|
4
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Farazi PA and DePinhO RA: Hepatocellular
carcinoma pathogenesis: From genes to environment. Nat Rev Cancer.
6:674–687. 2006.PubMed/NCBI View
Article : Google Scholar
|
7
|
Hartke J, Johnson M and Ghabril M: The
diagnosis and treatment of hepatocellular carcinoma. Semin Diagn
Pathol. 34:153–159. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Sinn DH, Choi GS, Park HC, Kim JM, Kim H,
Song KD, Kang TW, Lee MW, Rhim H, Hyun D, et al: Multidisciplinary
approach is associated with improved survival of hepatocellular
carcinoma patients. PLoS One. 14(e0210730)2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Giaccone G: Clinical perspectives on
platinum resistance. Drugs. 59 (Suppl 4):S9–S17; discussion 37-8.
2000.PubMed/NCBI View Article : Google Scholar
|
10
|
Galanski M: Recent developments in the
field of anticancer platinum complexes. Recent Pat Anticancer Drug
Discov. 1:285–295. 2006.PubMed/NCBI View Article : Google Scholar
|
11
|
Koberle B, Tomicic MT, Usanova S and Kaina
B: Cisplatin resistance: Preclinical findings and clinical
implications. Biochim Biophys Acta. 1806:172–182. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Johnsson P, Lipovich L, Grander D and
Morris KV: Evolutionary conservation of long non-coding RNAs;
sequence, structure, function. Biochim Biophys Acta.
1840:1063–1071. 2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297.
2004.PubMed/NCBI View Article : Google Scholar
|
14
|
Mo YY: MicroRNA regulatory networks and
human disease. Cell Mol Life Sci. 69:3529–3531. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Laffont B and Rayner KJ: MicroRNAs in the
pathobiology and therapy of atherosclerosis. Can J Cardiol.
33:313–324. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004.PubMed/NCBI View Article : Google Scholar
|
17
|
Wang Q, Yang X, Zhou X, Wu B, Zhu D, Jia
W, Chu J, Wang J, Wu J and Kong L: miR-3174 promotes proliferation
and inhibits apoptosis by targeting FOXO1 in hepatocellular
carcinoma. Biochem Biophys Res Commun. 526:889–897. 2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang J, Lu L, Luo Z, Li W, Lu Y, Tang Q
and Pu J: miR-383 inhibits cell growth and promotes cell apoptosis
in hepatocellular carcinoma by targeting IL-17 via STAT3 signaling
pathway. Biomed Pharmacother. 120(109551)2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Sun JJ, Chen GY and Xie ZT:
MicroRNA-361-5p inhibits cancer cell growth by targeting CXCR6 in
hepatocellular carcinoma. Cell Physiol Biochem. 38:777–785.
2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Cui W, Li Y, Xu K, Chen G, Lu X, Duan Q
and Kang Z: miR-361-5p inhibits hepatocellular carcinoma cell
proliferation and invasion by targeting VEGFA. Biochem Biophys Res
Commun. 479:901–906. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Gong D, Feng PC, Ke XF, Kuang HL, Pan LL,
Ye Q and Wu JB: Silencing long non-coding RNA LINC01224 inhibits
hepatocellular carcinoma progression via microRNA-330-5p-induced
inhibition of CHEK1. Mol Ther Nucleic Acids. 19:482–497.
2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Fawdar S, Trotter EW, Li Y, Stephenson NL,
Hanke F, Marusiak AA, Edwards ZC, Ientile S, Waszkowycz B, Miller
CJ and Brognard J: Targeted genetic dependency screen facilitates
identification of actionable mutations in FGFR4, MAP3K9, and PAK5
in lung cancer. Proc Natl Acad Sci USA. 110:12426–12431.
2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Munshi A and Ramesh R: Mitogen-activated
protein kinases and their role in radiation response. Genes Cancer.
4:401–408. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Nie F, Liu TM, Zhong L, Yang X, Liu Y, Xia
H, Liu X, Wang X, Liu Z, Zhou L, et al: MicroRNA-148b enhances
proliferation and apoptosis in human renal cancer cells via
directly targeting MAP3K9. Mol Med Rep. 13:83–90. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhao F, LV J, Gan H, Li Y, Wang R, Zhang
H, Wu Q and Chen Y: miRNA profle of osteosarcoma with CD117 and
stro-1 expression: miR-1247 functions as an onco-miRNA by targeting
MAP3K9. Int J Clin Exp Pathol. 8:1451–1458. 2015.PubMed/NCBI
|
26
|
Liu Z, Dang C, Xing E, Zhao M, Shi L and
Sun J: Overexpression of CASC2 improves cisplatin sensitivity in
hepatocellular carcinoma through sponging miR-222. DNA Cell Biol.
38:1366–1373. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
28
|
Margarit C, Escartín A, Castells L, Vargas
V, Allende E and Bilbao I: Resection for hepatocellular carcinoma
is a good option in Child-Turcotte-Pugh class A patients with
cirrhosis who are eligible for liver transplantation. Liver
Transpl. 11:1242–1251. 2005.PubMed/NCBI View
Article : Google Scholar
|
29
|
Cheng Y, Qiu L, He GL, Cai L, Peng BJ, Cao
YL and Pan MX: MicroRNA-361-5p suppresses the tumorigenesis of
hepatocellular carcinoma through targeting WT1 and suppressing
WNT/β-cadherin pathway. Eur Rev Med Pharmacol Sci. 23:8823–8832.
2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Zhang S, Liu Z, Wu L and Wang Y: miR-361
targets Yes-associated protein (YAP) mRNA to suppress cell
proliferation in lung cancer. Biochem Biophys Res Commun.
492:468–473. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Li R, Dong B, Wang Z, Jiang T and Chen G:
MicroRNA-361-5p inhibits papillary thyroid carcinoma progression by
targeting ROCK1. Biomed Pharmacother. 102:988–995. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Slattery ML, Lundgreen A and Wolff RK: MAP
kinase genes and colon and rectal cancer. Carcinogenesis.
33:2398–2408. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Stark MS, Woods SL, Gartside MG, Bonazzi
VF, Dutton-Regester K, Aoude LG, Chow D, Sereduk C, Niemi NM, Tang
N, et al: Frequent somatic mutations in MAP3K5 and MAP3K9 in
metastatic melanoma identifed by exome sequencing. Nat Genet.
44:165–169. 2011.PubMed/NCBI View
Article : Google Scholar
|
34
|
Thompson NA, Haefliger JA, Senn A,
Tawadros T, Magara F, Ledermann B, Nicod P and Waeber G:
Islet-brain1/JNK-interacting protein-1 is required for early
embryogenesis in mice. J Biol Chem. 276:27745–27748.
2001.PubMed/NCBI View Article : Google Scholar
|
35
|
Liu Y, Hou J, Zhang M, Seleh-Zo E, Wang J,
Cao B and An X: Circ-016910 sponges miR-574-5p to regulate cell
physiology and milk synthesis via MAPK and PI3K/AKT-mTOR pathways
in GMECs. J Cell Physiol. 235:4198–4216. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Abdeyrim A, Cheng X, Lian M and Tan Y:
miR-490-5p regulates the proliferation, migration, invasion and
epithelial-mesenchymal transition of pharyngolaryngeal cancer cells
by targeting mitogen-activated protein kinase kinasekinase 9. Int J
Mol Med. 44:240–252. 2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Cai P, Yang T, Jiang X, Zheng M, Xu G and
Xia J: Role of miR-15a in intervertebral disc degeneration through
targeting MAP3K9. Biomed Pharmacother. 87:568–574. 2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang X, Li J and Yan M: Targeted
hepatocellular carcinoma therapy: Transferrin modified,
self-assembled polymeric nanomedicine for co-delivery of cisplatin
and doxorubicin. Drug Dev Ind Pharm. 42:1590–1599. 2016.PubMed/NCBI View Article : Google Scholar
|