1
|
Xie T, Xu Q, Wan H, Xing S, Shang C, Gao Y
and He Z: Lipopolysaccharide promotes lung fibroblast proliferation
through autophagy inhibition via activation of the PI3K-Akt-mTOR
pathway. Lab Invest. 99:625–633. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Gu N, Xing S, Chen S, Zhou Y, Jiang T,
Jiao Y, Gao Y, Yu W, He Z and Wen D: Lipopolysaccharide induced the
proliferation of mouse lung fibroblasts by suppressing FoxO3a/p27
pathway. Cell Biol Int. 42:1311–1320. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhou WQ, Wang P, Shao QP and Wang J:
Lipopolysaccharide promotes pulmonary fibrosis in acute respiratory
distress syndrome (ARDS) via lincRNA-p21 induced inhibition of
Thy-1 expression. Mol Cell Biochem. 419:19–28. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Martin C, Papazian L, Payan MJ, Saux P and
Gouin F: Pulmonary fibrosis correlates with outcome in adult
respiratory distress syndrome. A study in mechanically ventilated
patients. Chest. 107:196–200. 1995.PubMed/NCBI View Article : Google Scholar
|
5
|
Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu
RM, Bernard K, Thannickal VJ and Liu G: Glycolytic reprogramming in
myofibroblast differentiation and lung fibrosis. Am J Respir Crit
Care Med. 192:1462–1474. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhong WJ, Yang HH, Guan XX, Xiong JB, Sun
CC, Zhang CY, Luo XQ, Zhang YF, Zhang J, Duan JX, et al: Inhibition
of glycolysis alleviates lipopolysaccharide-induced acute lung
injury in a mouse model. J Cell Physiol. 234:4641–4654.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Schruf E, Schroeder V, Kuttruff CA, Weigle
S, Krell M, Benz M, Bretschneider T, Holweg A, Schuler M, Frick M,
et al: Human lung fibroblast-to-myofibroblast transformation is not
driven by an LDH5-dependent metabolic shift towards aerobic
glycolysis. Respir Res. 20(87)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Kang YP, Lee SB, Lee JM, Kim HM, Hong JY,
Lee WJ, Choi CW, Shin HK, Kim DJ, Koh ES, et al: Metabolic
profiling regarding pathogenesis of idiopathic pulmonary fibrosis.
J Proteome Res. 15:1717–1724. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H,
Gao Y and He Z: PI3K-Akt-mTOR/PFKFB3 pathway mediated lung
fibroblast aerobic glycolysis and collagen synthesis in
lipopolysaccharide-induced pulmonary fibrosis. Lab Invest.
100:801–811. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Cao Y, Zhang X, Wang L, Yang Q, Ma Q, Xu
J, Wang J, Kovacs L, Ayon RJ, Liu Z, et al: PFKFB3-mediated
endothelial glycolysis promotes pulmonary hypertension. Proc Natl
Acad Sci USA. 116:13394–13403. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Kheirollahi V, Wasnick RM, Biasin V,
Vazquez-Armendariz AI, Chu X, Moiseenko A, Weiss A, Wilhelm J,
Zhang JS, Kwapiszewska G, et al: Metformin induces lipogenic
differentiation in myofibroblasts to reverse lung fibrosis. Nat
Commun. 10(2987)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Gamad N, Malik S, Suchal K, Vasisht S,
Tomar A, Arava S, Arya DS and Bhatia J: Metformin alleviates
bleomycin-induced pulmonary fibrosis in rats: Pharmacological
effects and molecular mechanisms. Biomed Pharmacother.
97:1544–1553. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Wang J, Wang Y, Han J, Mei H, Yu D, Ding
Q, Zhang T, Wu G, Peng G and Lin Z: Metformin attenuates
radiation-induced pulmonary fibrosis in a murine model. Radiat Res.
188:105–113. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Liu Y, Bai F, Liu N, Zhang B, Qin F, Tu T,
Li B, Li J, Ma Y, Ouyang F and Liu Q: Metformin improves lipid
metabolism and reverses the Warburg effect in a canine model of
chronic atrial fibrillation. BMC Cardiovasc Disord.
20(50)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo
S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, et al:
Metformin improves mitochondrial respiratory activity through
activation of AMPK. Cell Rep. 29:1511–1523.e1515. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Hawley SA, Ross FA, Chevtzoff C, Green KA,
Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM and
Hardie DG: Use of cells expressing gamma subunit variants to
identify diverse mechanisms of AMPK activation. Cell Metab.
11:554–565. 2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Mossmann D, Park S and Hall MN: mTOR
signalling and cellular metabolism are mutual determinants in
cancer. Nat Rev Cancer. 18:744–757. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Mousavizadeh R, Hojabrpour P, Eltit F,
McDonald PC, Dedhar S, McCormack RG, Duronio V, Jafarnejad SM and
Scott A: β1 integrin, ILK and mTOR regulate collagen synthesis in
mechanically loaded tendon cells. Sci Rep. 10(12644)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Ma XM and Blenis J: Molecular mechanisms
of mTOR-mediated translational control. Nat Rev Mol Cell Biol.
10:307–318. 2009.PubMed/NCBI View
Article : Google Scholar
|
20
|
Lv C, Wu C, Zhou YH, Shao Y, Wang G and
Wang QY: Alpha lipoic acid modulated high glucose-induced rat
mesangial cell dysfunction via mTOR/p70S6K/4E-BP1 pathway. Int J
Endocrinol. 2014(658589)2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Wu K, Tian R, Huang J, Yang Y, Dai J,
Jiang R and Zhang L: Metformin alleviated endotoxemia-induced acute
lung injury via restoring AMPK-dependent suppression of mTOR. Chem
Biol Interact. 291:1–6. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Owen MR, Doran E and Halestrap AP:
Evidence that metformin exerts its anti-diabetic effects through
inhibition of complex 1 of the mitochondrial respiratory chain.
Biochem J. 348:607–614. 2000.PubMed/NCBI
|
23
|
Xiao H, Huang X, Wang S, Liu Z, Dong R,
Song D and Dai H: Metformin ameliorates bleomycin-induced pulmonary
fibrosis in mice by suppressing IGF-1. Am J Transl Res. 12:940–949.
2020.PubMed/NCBI
|
24
|
Sato N, Takasaka N, Yoshida M, Tsubouchi
K, Minagawa S, Araya J, Saito N, Fujita Y, Kurita Y, Kobayashi K,
et al: Metformin attenuates lung fibrosis development via NOX4
suppression. Respir Res. 17(107)2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Xu JN, Li JY, Yu ZH, Rao HW, Wang S and
Lan HB: HMGB1 promotes HLF-1 proliferation and ECM production
through activating HIF1-α-regulated aerobic glycolysis. Pulm
Pharmacol Ther. 45:136–141. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Cho SJ, Moon JS, Lee CM, Choi AM and
Stout-Delgado HW: Glucose transporter 1-dependent glycolysis is
increased during aging-related lung fibrosis, and phloretin
inhibits lung fibrosis. Am J Respir Cell Mol Biol. 56:521–531.
2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Gong Y, Lan H, Yu Z, Wang M, Wang S, Chen
Y, Rao H, Li J, Sheng Z and Shao J: Blockage of glycolysis by
targeting PFKFB3 alleviates sepsis-related acute lung injury via
suppressing inflammation and apoptosis of alveolar epithelial
cells. Biochem Biophys Res Commun. 491:522–529. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Kottmann RM, Trawick E, Judge JL, Wahl LA,
Epa AP, Owens KM, Thatcher TH, Phipps RP and Sime PJ: Pharmacologic
inhibition of lactate production prevents myofibroblast
differentiation. Am J Physiol Lung Cell Mol Physiol.
309:L1305–L1312. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Cheng SC, Quintin J, Cramer RA, Shepardson
KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao
NA, Aghajanirefah A, et al: mTOR- and HIF-1α-mediated aerobic
glycolysis as metabolic basis for trained immunity. Science.
345(1250684)2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Wu F, Gao P, Wu W, Wang Z, Yang J, Di J,
Jiang B and Su X: STK25-induced inhibition of aerobic glycolysis
via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal
cancer. J Exp Clin Cancer Res. 37(144)2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Liu MW, Su MX, Tang DY, Hao L, Xun XH and
Huang YQ: Ligustrazin increases lung cell autophagy and ameliorates
paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and
hedgehog signalling via increasing miR-193a expression. BMC Pulm
Med. 19(35)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Wan H, Xie T, Xu Q, Hu X, Xing S, Yang H,
Gao Y and He Z: Thy-1 depletion and integrin β3
upregulation-mediated PI3K-Akt-mTOR pathway activation inhibits
lung fibroblast autophagy in lipopolysaccharide-induced pulmonary
fibrosis. Lab Invest. 99:1636–1649. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Feng Y and Wu L: mTOR up-regulation of
PFKFB3 is essential for acute myeloid leukemia cell survival.
Biochem Biophys Res Commun. 483:897–903. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Li Z, Liu J, Que L and Tang X: The
immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral
squamous carcinoma via PI3K/Akt/mTOR pathway. J Cancer.
10:5770–5784. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Suginohara T, Wakabayashi K, Ato S and
Ogasawara R: Effect of 2-deoxyglucose-mediated inhibition of
glycolysis on the regulation of mTOR signaling and protein
synthesis before and after high-intensity muscle contraction.
Metabolism. 114(154419)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Duca FA, Cote CD, Rasmussen BA,
Zadeh-Tahmasebi M, Rutter GA, Filippi BM and Lam TK: Metformin
activates a duodenal Ampk-dependent pathway to lower hepatic
glucose production in rats. Nat Med. 21:506–511. 2015.PubMed/NCBI View
Article : Google Scholar
|
37
|
Cho SJ, Moon JS, Lee CM, Choi AM and
Stout-Delgado HW: Glucose transporter 1-dependent glycolysis is
increased during aging-related lung fibrosis, and phloretin
inhibits lung fibrosis. Am J Respir Cell Mol Biol. 56:521–531.
2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang L, Yang H, Zhang W, Liang Z, Huang
Q, Xu G, Zhen X and Zheng LT: Clk1-regulated aerobic glycolysis is
involved in glioma chemoresistance. J Neurochem. 142:574–588.
2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Kim J, Kundu M, Viollet B and Guan KL:
AMPK and mTOR regulate autophagy through direct phosphorylation of
Ulk1. Nat Cell Biol. 13:132–141. 2011.PubMed/NCBI View Article : Google Scholar
|
40
|
Kawaguchi M, Aoki S, Hirao T, Morita M and
Ito K: Autophagy is an important metabolic pathway to determine
leukemia cell survival following suppression of the glycolytic
pathway. Biochem Biophys Res Commun. 474:188–192. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Xie T, Xu Q, Wan H, Xing S, Shang C, Gao Y
and He Z: Lipopolysaccharide promotes lung fibroblast proliferation
through autophagy inhibition via activation of the PI3K-Akt-mTOR
pathway. Lab Invest. 99:625–633. 2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Thannickal VJ, Toews GB, White ES, Lynch
JP III and Martinez FJ: Mechanisms of pulmonary fibrosis. Annu Rev
Med. 55:395–417. 2004.PubMed/NCBI View Article : Google Scholar
|
43
|
Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y,
Xiang Z and Han X: Alveolar epithelial cell-derived Sonic hedgehog
promotes pulmonary fibrosis through OPN-dependent alternative
macrophage activation. FEBS J: Dec 13, 2020 (Epub ahead of print).
doi: https://doi.org/10.1111/febs.15669.
|
44
|
Wang Y, Lin C, Han R, Lu C, Li L, Hu C,
Feng M, Chen H and He Y: Metformin attenuates TGF-β1-induced
pulmonary fibrosis through inhibition of transglutaminase 2 and
subsequent TGF-β pathways. 3 Biotech. 10(287)2020.PubMed/NCBI View Article : Google Scholar
|