1
|
Fujiwara K, Mochida S, Matsui A, Nakayama
N, Nagoshi S and Toda G: Intractable Liver Diseases Study Group of
Japan. Fulminant hepatitis and late onset hepatic failure in Japan.
Hepatol Res. 38:646–657. 2008.PubMed/NCBI View Article : Google Scholar
|
2
|
Starzl TE, Iwatsuki S, Van Thiel DH,
Gartner JC, Zitelli BJ, Malatack JJ, Schade RR, Shaw BW Jr, Hakala
TR, Rosenthal JT and Porter KA: Evolution of liver transplantation.
Hepatology. 2:614–636. 1982.PubMed/NCBI View Article : Google Scholar
|
3
|
Polson J and Lee WM: American Association
for the Study of Liver Disease. AASLD position paper: The
management of acute liver failure. Hepatology. 41:1179–1197.
2005.PubMed/NCBI View Article : Google Scholar
|
4
|
Rake MO, Flute PT, Pannell G and Williams
R: Intravascular coagulation in acute hepatic necrosis. Lancet.
1:533–537. 1970.PubMed/NCBI View Article : Google Scholar
|
5
|
Mochida S and Fujiwara K: Symposium on
clinical aspects in hepatitis virus infection. 2. Recent advances
in acute and fulminant hepatitis in Japan. Int Med. 40:175–177.
2001.PubMed/NCBI View Article : Google Scholar
|
6
|
Hirata K, Ogata I, Ohta Y and Fujiwara K:
Hepatic sinusoidal cell destruction in the development of
intravascular coagulation in acute liver failure of rats. J Pathol.
158:157–165. 1989.PubMed/NCBI View Article : Google Scholar
|
7
|
Mochida S, Arai M, Ohno A, Yamanobe F,
Ishikawa K, Matsui A, Maruyama I, Kato H and Fujiwara K: Deranged
blood coagulation equilibrium as a factor of massive liver necrosis
following endotoxin administration in partially hepatectomized
rats. Hepatology. 29:1532–1540. 1999.PubMed/NCBI View Article : Google Scholar
|
8
|
Vollmar B, Glasz J, Leiderer R, Post S and
Menger MD: Hepatic microcirculatory perfusion failure is a
determinant of liver dysfunction in warm ischemia-reperfusion. Am J
Pathol. 145:1421–1431. 1994.PubMed/NCBI
|
9
|
Palmes D, Skawran S, Stratmann U, Armann
B, Minin E, Herbst H and Spiegel HU: Amelioration of
microcirculatory damage by an endothelin a receptor antagonist in a
rat model of reversible acute liver failure. J Hepatol. 42:350–357.
2005.PubMed/NCBI View Article : Google Scholar
|
10
|
Hillenbrand P, Parbhoo SP, Jedrychowski A
and Sherlock S: Significance of intravascular coagulation and
fibrinolysis in acute hepatic failure. Gut. 15:83–88.
1974.PubMed/NCBI View Article : Google Scholar
|
11
|
Kotoh K, Kato M, Kohjima M, Tanaka M,
Miyazaki M, Nakamura K, Enjoji M, Nakamuta M and Takayanagi R:
Lactate dehydrogenase production in hepatocytes is increased at an
early stage of acute liver failure. Exp Ther Med. 2:195–199.
2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Gazzard BG, Clark R, Borirakchanyavat V
and Williams R: A controlled trial of heparin therapy in the
coagulation defect of paracetamol-induced hepatic necrosis. Gut.
15:89–93. 1974.PubMed/NCBI View Article : Google Scholar
|
13
|
Lukacova S, Sørensen BS, Alsner J,
Overgaard J and Horsman MR: The impact of hypoxia on the activity
of lactate dehydrogenase in two different pre-clinical tumour
models. Acta Oncol. 47:941–947. 2008.PubMed/NCBI View Article : Google Scholar
|
14
|
Selmeci L, Farkas A, Pósch E, Szelényi I
and Sós J: The effect of hypoxia on the lactic dehydrogenase (LDH)
activity of serum and heart muscle of rats. Life Sci. 6:649–653.
1967.PubMed/NCBI View Article : Google Scholar
|
15
|
Firth JD, Ebert BL, Pugh CW and Ratcliffe
PJ: Oxygen-regulated control elements in the phosphoglycerate
kinase 1 and lactate dehydrogenase a genes: Similarities with the
erythropoietin 3'enhancer. Proc Natl Acad Sci USA. 91:6496–6500.
1994.PubMed/NCBI View Article : Google Scholar
|
16
|
Kotoh K, Enjoji M, Kato M, Kohjima M,
Nakamuta M and Takayanagi R: A new parameter using serum lactate
dehydrogenase and alanine aminotransferase level is useful for
predicting the prognosis of patients at an early stage of acute
liver injury: A retrospective study. Comp Hepatol.
7(6)2008.PubMed/NCBI View Article : Google Scholar
|
17
|
Panda S, Jena SK, Nanda R, Mangaraj M and
Nayak P: Ischaemic markers in acute hepatic injury. J Clin Diagn
Res. 10:BC17–BC20. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Kato J, Okamoto T, Motoyama H, Uchiyama R,
Kirchhofer D, Van Rooijen N, Enomoto H, Nishiguchi S, Kawada N,
Fujimoto J and Tsutsui H: Interferon-gamma-mediated tissue factor
expression contributes to T-cell-mediated hepatitis through
induction of hypercoagulation in mice. Hepatology. 57:362–372.
2013.PubMed/NCBI View Article : Google Scholar
|
19
|
Wang Y, Feng D, Wang H, Xu MJ, Park O, Li
Y and Gao B: STAT4 knockout mice are more susceptible to
Concanavalin A-induced T-cell hepatitis. Am J Pathol.
184:1785–1794. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Gezginci S and Bolkent S: The effect of
Z-FA.FMK on D-galactosamine/TNF-alpha-induced liver injury in mice.
Cell Biochem Funct. 25:277–286. 2007.PubMed/NCBI View
Article : Google Scholar
|
21
|
Caria CR, Moscato CH, Tomé RB, Pedrazzoli
J Jr, Ribeiro ML and Gambero A: Nitric oxide interferes with
hypoxia signaling during colonic inflammation. Arq Gastroenterol.
51:302–308. 2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Cassidy WM and Reynolds TB: Serum lactic
dehydrogenase in the differential diagnosis of acute hepatocellular
injury. J Clin Gastroenterol. 19:118–121. 1994.PubMed/NCBI View Article : Google Scholar
|
23
|
Qu A, Taylor M, Xue X, Matsubara T,
Metzger D, Chambon P, Gonzalez FJ and Shah YM: Hypoxia-inducible
transcription factor 2α promotes steatohepatitis through augmenting
lipid accumulation, inflammation, and fibrosis. Hepatology.
54:472–483. 2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Engelmann B, Luther T and Müller I:
Intravascular tissue factor pathway-a model for rapid initiation of
coagulation within the blood vessel. Thromb Haemost. 89:3–8.
2003.PubMed/NCBI
|
25
|
Tiegs G, Hentschel J and Wendel A: A T
cell-dependent experimental liver injury in mice inducible by
Concanavalin A. J Clin Invest. 90:196–203. 1992.PubMed/NCBI View Article : Google Scholar
|
26
|
Tagawa Y, Sekikawa K and Iwakura Y:
Suppression of Concanavalin A-induced hepatitis in IFN-gamma(-/-)
mice, but not in TNF-alpha(-/-) mice: Role for IFN-gamma in
activating apoptosis of hepatocytes. J Immunol. 159:1418–1428.
1997.PubMed/NCBI
|
27
|
Bradham CA, Plümpe J, Manns MP, Brenner DA
and Trautwein C: Mechanisms of hepatic toxicity. I. TNF-induced
liver injury. Am J Physiol. 275:G387–G392. 1998.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang HX, Liu M, Weng SY, Li JJ, Xie C, He
HL, Guan W, Yuan YS and Gao J: Immune mechanisms of Concanavalin A
model of autoimmune hepatitis. World J Gastroenterol. 18:119–125.
2012.PubMed/NCBI View Article : Google Scholar
|
29
|
Suzuki H, Harada S, Takao S, Takahashi M,
Kato M and Kotoh K: Low-grade elevation of fibrinogen-degradation
products is an important parameter to identify acute presentation
of autoimmune hepatitis. Scand J Gastroenterol. 51:986–993.
2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Kogiso T, Sagawa T, Oda M, Yoshiko S,
Kodama K, Taniai M and Tokushige K: Characteristics of acute
hepatitis A virus infection before and after 2001: A hospital-based
study in Tokyo, Japan. J Gastroenterol Hepatol. 34:1836–1842.
2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Manka P, Verheyen J, Gerken G and Canbay
A: Liver failure due to acute viral hepatitis (A-E). Visc Med.
32:80–85. 2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Rutherford A and Chung RT: Acute liver
failure: Mechanisms of hepatocyte injury and regeneration. Semin
Liver Dis. 28:167–174. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Guicciardi ME, Malhi H, Mott JL and Gores
GJ: Apoptosis and necrosis in the liver. Compr Physiol. 3:977–1010.
2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Rutherford AE, Hynan LS, Borges CB,
Forcione DG, Blackard JT, Lin W, Gorman AR, Shaikh OS, Reuben A,
Harrison E, et al: Serum apoptosis markers in acute liver failure:
A pilot study. Clin Gastroenterol Hepatol. 5:1477–1483.
2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Rutherford A, King LY, Hynan LS, Vedvyas
C, Lin W, Lee WM and Chung RT: ALF Study Group. Development of an
accurate index for predicting outcomes of patients with acute liver
failure. Gastroenterology. 143:1237–1243. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Zamaraeva MV, Sabirov RZ, Maeno E,
Ando-Akatsuka Y, Bessonova SV and Okada Y: Cells die with increased
cytosolic ATP during apoptosis: A bioluminescence study with
intracellular luciferase. Cell Death Differ. 12:1390–1397.
2005.PubMed/NCBI View Article : Google Scholar
|
37
|
Kopec AK and Luyendyk JP: Role of
Fibrin(ogen) in progression of liver disease: Guilt by association?
Semin Thromb Hemost. 42:397–407. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Lohse AW, Knolle PA, Bilo K, Uhrig A,
Waldmann C, Ibe M, Schmitt E, Gerken G and Zum Büschenfelde KH:
Antigen-presenting function and B7 expression of murine sinusoidal
endothelial cells and Kupffer cells. Gastroenterology.
110:1175–1181. 1996.PubMed/NCBI View Article : Google Scholar
|
39
|
Groeneveld D, Cline-Fedewa H, Baker KS,
Williams KJ, Roth RA, Mittermeier K, Lisman T, Palumbo JS and
Luyendyk JP: Von Willebrand factor delays liver repair after
acetaminophen-induced acute liver injury in mice. J Hepatol.
72:146–155. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Rani R, Tandon A, Wang J, Kumar S and
Gandhi CR: Stellate cells orchestrate Concanavalin a-induced acute
liver damage. Am J Pathol. 187:2008–2019. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Kuwano A, Kohjima M, Suzuki H, Yamasaki A,
Ohashi T, Imoto K, Miho Kurokawa M, Morita Y, Kato M and Ogawa Y:
Recombinant human soluble thrombomodulin ameliorates
acetaminophen-induced liver toxicity in mice. Exp Ther Med.
18:1323–1330. 2019.PubMed/NCBI View Article : Google Scholar
|