1
|
Aristeidou A, Taniguchi EV, Tsatsos M,
Muller R, McAlinden C, Pineda R and Paschalis EI: The evolution of
corneal and refractive surgery with the femtosecond laser. Eye Vis
(Lond). 2(12)2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Reinstein DZ, Archer TJ and Gobbe M: Small
incision lenticule extraction (SMILE) history, fundamentals of a
new refractive surgery technique and clinical outcomes. Eye Vis
(Lond). 1(3)2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Yan H, Gong LY, Huang W and Peng YL:
Clinical outcomes of small incision lenticule extraction versus
femtosecond laser-assisted LASIK for myopia: A Meta-analysis. Int J
Ophthalmol. 10:1436–1445. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Wang D, Liu M, Chen Y, Zhang X, Xu Y, Wang
J, To CH and Liu Q: Differences in the corneal biomechanical
changes after SMILE and LASIK. J Refract Surg. 30:702–707.
2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Shah R, Shah S and Sengupta S: Results of
small incision lenticule extraction: All-in-one femtosecond laser
refractive surgery. J Cataract Refract Surg. 37:127–137.
2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Chen Y, Yin YW, Zhao Y, Wu XY, Young K,
Song WT, Xia XB and Wen D: Differentiation of human embryonic stem
cells derived mesenchymal stem cells into corneal epithelial cells
after being seeded on decellularized SMILE-derived lenticules. Int
J Ophthalmol. 12:717–724. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Soong HK and Malta JB: Femtosecond lasers
in ophthalmology. Am J Ophthalmol. 147:189–197.e2. 2009.PubMed/NCBI View Article : Google Scholar
|
8
|
Sumioka T, Miyamoto T, Takatsuki R, Okada
Y, Yamanaka O and Saika S: Histological analysis of a cornea
following experimental femtosecond laser ablation. Cornea. 33
(Suppl 11):S19–S24. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Miao H, He L, Shen Y, Li M, Yu Y and Zhou
X: Optical quality and intraocular scattering after femtosecond
laser small incision lenticule extraction. J Refract Surg.
30:296–302. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Heichel J, Blum M, Duncker GI, Sietmann R
and Kunert KS: Surface quality of porcine corneal lenticules after
Femtosecond Lenticule Extraction. Ophthalmic Res. 46:107–112.
2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Cheng YY, Kang SJ, Grossniklaus HE, Pels
E, Duimel HJ, Frederik PM, Hendrikse F and Nuijts RM: Histologic
evaluation of human posterior lamellar discs for femtosecond laser
Descemet's stripping endothelial keratoplasty. Cornea. 28:73–79.
2009.PubMed/NCBI View Article : Google Scholar
|
12
|
Yoo SH and Hurmeric V: Femtosecond
laser-assisted keratoplasty. Am J Ophthalmol. 151:189–191.
2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Chamberlain WD, Rush SW, Mathers WD,
Cabezas M and Fraunfelder FW: Comparison of femtosecond
laser-assisted keratoplasty versus conventional penetrating
keratoplasty. Ophthalmology. 118:486–491. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhao J, Shang J, Niu L, Xu H, Yang D, Zhao
Y, Fu D and Zhou X: Two-year outcome of an eye that underwent
hyperopic LASIK following inadvertent myopic SMILE lenticule in
situ implantation. BMC Ophthalmol. 19(176)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Jin H, He M, Liu H and Zhong X, Wu J, Liu
L, Ding H, Zhang C and Zhong X: Small-incision femtosecond
laser-assisted intracorneal concave lenticule implantation in
patients with keratoconus. Cornea. 38:446–453. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Abd Elaziz MS, Zaky AG and El SaebaySarhan
AR: Stromal lenticule transplantation for management of corneal
perforations; one year results. Graefes Arch Clin Exp Ophthalmol.
255:1179–1184. 2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Piñero-Llorens DP, Murueta-Goyena
Larrañaga A and Hanneken L: Visual outcomes and complications of
small-incision lenticule extraction: A review. Exp Rev Ophthalmol.
11:59–75. 2016.
|
18
|
Ang M, Chaurasia SS, Angunawela RI, Poh R,
Riau A, Tan D and Mehta JS: Femtosecond lenticule extraction
(FLEx): Clinical results, interface evaluation, and intraocular
pressure variation. Invest Ophthalmol Vis Sci. 53:1414–1421.
2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhao J, Miao H, Han T, Shen Y, Zhao Y, Sun
L and Zhou X: A Pilot Study of SMILE for Hyperopia: Corneal
Morphology and Surface Characteristics of Concave Lenticules in
Human Donor Eyes. J Refract Surg. 32:713–716. 2016.PubMed/NCBI View Article : Google Scholar
|
20
|
Sugar A: Ultrafast (femtosecond) laser
refractive surgery. Curr Opin Ophthalmol. 13:246–249.
2002.PubMed/NCBI View Article : Google Scholar
|
21
|
Vossmerbaeumer U and Jonas JB: Structure
of intracorneal femtosecond laser pulse effects in conical incision
profiles. Graefes Arch Clin Exp Ophthalmol. 246:1017–1020.
2008.PubMed/NCBI View Article : Google Scholar
|
22
|
Kaiserman I, Maresky HS, Bahar I and
Rootman DS: Incidence, possible risk factors, and potential effects
of an opaque bubble layer created by a femtosecond laser. J
Cataract Refract Surg. 34:417–423. 2008.PubMed/NCBI View Article : Google Scholar
|
23
|
Kanellopoulos AJ and Asimellis G: Digital
analysis of flap parameter accuracy and objective assessment of
opaque bubble layer in femtosecond laser-assisted LASIK: A novel
technique. Clin Ophthalmol. 7:343–351. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Hurmeric V, Yoo SH, Fishler J, Chang VS,
Wang J and Culbertson WW: In vivo structural characteristics of the
femtosecond LASIK-induced opaque bubble layers with
ultrahigh-resolution SD-OCT. Ophthalmic Surg Lasers Imaging. 41
(Suppl):S109–S113. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Winkler M, Chai D, Kriling S, Nien CJ,
Brown DJ, Jester B, Juhasz T and Jester JV: Nonlinear optical
macroscopic assessment of 3-D corneal collagen organization and
axial biomechanics. Invest Ophthalmol Vis Sci. 52:8818–8827.
2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Kunert KS, Blum M, Duncker GI, Sietmann R
and Heichel J: Surface quality of human corneal lenticules after
femtosecond laser surgery for myopia comparing different laser
parameters. Graefes Arch Clin Exp Ophthalmol. 249:1417–1424.
2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Serrao S, Buratto L, Lombardo G, De Santo
MP, Ducoli P and Lombardo M: Optimal parameters to improve the
interface quality of the flap bed in femtosecond laser-assisted
laser in situ keratomileusis. J Cataract Refract Surg.
38:1453–1459. 2012.PubMed/NCBI View Article : Google Scholar
|
28
|
Winkler von Mohrenfels C, Khoramnia R,
Maier MM, Pfäffl W, Hölzlwimmer G and Lohmann C: Cut quality of a
new femtosecond laser system. Klin Monatsbl Augenheilkd.
226:470–474. 2009.PubMed/NCBI View Article : Google Scholar : (In German).
|
29
|
Sarayba MA, Maguen E, Salz J, Rabinowitz Y
and Ignacio TS: Femtosecond laser keratome creation of partial
thickness donor corneal buttons for lamellar keratoplasty. J
Refract Surg. 23:58–65. 2007.PubMed/NCBI
|
30
|
Riau AK, Angunawela RI, Chaurasia SS, Tan
DT and Mehta JS: Effect of different femtosecond laser-firing
patterns on collagen disruption during refractive lenticule
extraction. J Cataract Refract Surg. 38:1467–1475. 2012.PubMed/NCBI View Article : Google Scholar
|
31
|
Weng S, Liu M, Yang X, Liu F, Zhou Y, Lin
H and Liu Q: Evaluation of Human Corneal Lenticule Quality After
SMILE With Different Cap Thicknesses Using Scanning Electron
Microscopy. Cornea. 37:59–65. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhang C, Bald M, Tang M, Li Y and Huang D:
Interface quality of different corneal lamellar-cut depths for
femtosecond laser-assisted lamellar anterior keratoplasty. J
Cataract Refract Surg. 41:827–835. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Soong HK, Mian S, Abbasi O and Juhasz T:
Femtosecond laser-assisted posterior lamellar keratoplasty: Initial
studies of surgical technique in eye bank eyes. Ophthalmology.
112:44–49. 2005.PubMed/NCBI View Article : Google Scholar
|
34
|
Zhao Y, Li M, Sun L, Zhao J, Chen Y and
Zhou X: Lenticule Quality After Continuous Curvilinear
Lenticulerrhexis in SMILE Evaluated With Scanning Electron
Microscopy. J Refract Surg. 31:732–735. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Lombardo M, De Santo MP, Lombardo G,
Schiano Lomoriello D, Desiderio G, Ducoli P, Barberi R and Serrao
S: Surface quality of femtosecond dissected posterior human corneal
stroma investigated with atomic force microscopy. Cornea.
31:1369–1375. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Ziebarth NM, Lorenzo MA, Chow J, Cabot F,
Spooner GJ, Dishler J, Hjortdal JØ and Yoo SH: Surface quality of
human corneal lenticules after SMILE assessed using environmental
scanning electron microscopy. J Refract Surg. 30:388–393.
2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Aoki S, Murata H, Matsuura M, Fujino Y,
Nakakura S, Nakao Y, Kiuchi Y and Asaoka R: The effect of air
pulse-driven whole eye motion on the association between corneal
hysteresis and glaucomatous visual field progression. Sci Rep.
8(2969)2018.PubMed/NCBI View Article : Google Scholar
|