1
|
Mattiuzzi C and Lippi G: Current cancer
epidemiology. J Epidemiol Glob Health. 9:217–222. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Ito H and Matsuo K: Molecular
epidemiology, and possible real-world applications in breast
cancer. Breast Cancer. 23:33–38. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Ghoncheh M, Pournamdar Z and Salehiniya H:
Incidence and mortality and epidemiology of breast cancer in the
world. Asian Pac J Cancer Prev. 17:43–46. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Shin M, Momb J and Appling DR: Human
mitochondrial MTHFD2 is a dual redox cofactor-specific
methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate
cyclohydrolase. Cancer Metab. 5(11)2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Green NH, Galvan DL, Badal SS, Chang BH,
LeBleu VS, Long J, Jonasch E and Danesh FR: MTHFD2 links RNA
methylation to metabolic reprogramming in renal cell carcinoma.
Oncogene. 38:6211–6225. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Nilsson R, Jain M, Madhusudhan N, Sheppard
NG, Strittmatter L, Kampf C, Huang J, Asplund A and Mootha VK:
Metabolic enzyme expression highlights a key role for MTHFD2 and
the mitochondrial folate pathway in cancer. Nat Commun.
5(3128)2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Mattaini KR, Sullivan MR and Vander Heiden
MG: The importance of serine metabolism in cancer. J Cell Biol.
214:249–257. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu
QN, Mo HY, Wang ZX, Wang DS, Pu HY, et al: Modulation of redox
homeostasis by inhibition of MTHFD2 in colorectal cancer:
Mechanisms and therapeutic implications. J Natl Cancer Inst.
111:584–596. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Lin H, Huang B, Wang H, Liu X, Hong Y, Qiu
S and Zheng J: MTHFD2 overexpression predicts poor prognosis in
renal cell carcinoma and is associated with cell proliferation and
vimentin-modulated migration and invasion. Cell Physiol Biochem.
51:991–1000. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Pikman Y, Puissant A, Alexe G, Furman A,
Chen LM, Frumm SM, Ross L, Fenouille N, Bassil CF, Lewis CA, et al:
Targeting MTHFD2 in acute myeloid leukemia. J Exp Med.
213:1285–1306. 2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Yu C, Yang L, Cai M, Zhou F, Xiao S, Li Y,
Wan T, Cheng D, Wang L, Zhao C and Huang X: Down-regulation of
MTHFD2 inhibits NSCLC progression by suppressing cycle-related
genes. J Cell Mol Med. 24:1568–1577. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Liu F, Liu Y, He C, Tao L, He X, Song H
and Zhang G: Increased MTHFD2 expression is associated with poor
prognosis in breast cancer. Tumour Biol. 35:8685–8690.
2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Tedeschi PM, Vazquez A, Kerrigan JE and
Bertino JR: Mitochondrial methylenetetrahydrofolate dehydrogenase
(MTHFD2) overexpression is associated with tumor cell proliferation
and is a novel target for drug development. Mol Cancer Res.
13:1361–1366. 2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Wei Y, Liu P, Li Q, Du J, Chen Y, Wang Y,
Shi H, Wang Y, Zhang H, Xue W, et al: The effect of MTHFD2 on the
proliferation and migration of colorectal cancer cell lines. Onco
Targets Ther. 12:6361–6370. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Sheppard NG, Jarl L, Mahadessian D,
Strittmatter L, Schmidt A, Madhusudan N, Tegnér J, Lundberg EK,
Asplund A, Jain M and Nilsson R: The folate-coupled enzyme MTHFD2
is a nuclear protein and promotes cell proliferation. Sci Rep.
5(15029)2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Derunes C, Burgess R, Iraheta E, Kellerer
R, Becherer K, Gessner CR, Li S, Hewitt K, Vuori K, Pasquale EB, et
al: Molecular determinants for interaction of SHEP1 with Cas
localize to a highly solvent-protected region in the complex. FEBS
Lett. 580:175–178. 2006.PubMed/NCBI View Article : Google Scholar
|
19
|
Wigler M, Pellicer A, Silverstein S and
Axel R: Biochemical transfer of single-copy eucaryotic genes using
total cellular DNA as donor. Cell. 14:725–731. 1978.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Liang T, Zhang Y, Yin S, Gan T, An T,
Zhang R, Wang Y, Huang Y, Zhou Q and Zhang J: Cardio-protecteffect
of qiliqiangxin capsule on left ventricular remodeling, dysfunction
and apoptosis in heart failure rats after chronic myocardial
infarction. Am J Transl Res. 8:2047–2058. 2016.PubMed/NCBI
|
22
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Lehtinen L, Ketola K, Mäkelä R, Mpindi JP,
Viitala M, Kallioniemi O and Iljin K: High-throughput RNAi
screening for novel modulators of vimentin expression identifies
MTHFD2 as a regulator of breast cancer cell migration and invasion.
Oncotarget. 4:48–63. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Koufaris C, Gallage S, Yang T, Lau CH,
Valbuena GN and Keun HC: Suppression of MTHFD2 in MCF-7 breast
cancer cells increases glycolysis, dependency on exogenous glycine,
and sensitivity to folate depletion. J Proteome Res. 15:2618–2625.
2016.PubMed/NCBI View Article : Google Scholar
|
25
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G
and Thompson CB: The biology of cancer: Metabolic reprogramming
fuels cell growth and proliferation. Cell Metab. 7:11–20.
2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Campbell SL and Wellen KE: Metabolic
signaling to the nucleus in cancer. Mol Cell. 71:398–408.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Torti SV and Torti FM: Iron and cancer:
More ore to be mined. Nat Rev Cancer. 13:342–355. 2013.PubMed/NCBI View
Article : Google Scholar
|
28
|
Zhuang J, Song Y, Ye Y, He S, Ma X, Zhang
M, Ni J, Wang J and Xia W: PYCR1 interference inhibits cell growth
and survival via c-Jun N-terminal kinase/insulin receptor substrate
1 (JNK/IRS1) pathway in hepatocellular cancer. J Transl Med.
17(343)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Elstrom RL, Bauer DE, Buzzai M, Karnauskas
R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM and
Thompson CB: Akt stimulates aerobic glycolysis in cancer cells.
Cancer Res. 64:3892–3899. 2004.PubMed/NCBI View Article : Google Scholar
|
30
|
Chu N, Salguero AL, Liu AZ, Chen Z,
Dempsey DR, Ficarro SB, Alexander WM, Marto JA, Li Y, Amzel LM, et
al: Akt kinase activation mechanisms revealed using protein
semisynthesis. Cell. 174:897–907.e14. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Schultze SM, Hemmings BA, Niessen M and
Tschopp O: PI3K/AKT, MAPK and AMPK signalling: Protein kinases in
glucose homeostasis. Expert Rev Mol Med. 14(e1)2012.PubMed/NCBI View Article : Google Scholar
|
32
|
Rathmell JC, Fox CJ, Plas DR, Hammerman
PS, Cinalli RM and Thompson CB: Akt-directed glucose metabolism can
prevent Bax conformation change and promote growth
factor-independent survival. Mol Cell Biol. 23:7315–7328.
2003.PubMed/NCBI View Article : Google Scholar
|
33
|
Tong X, Zhao F and Thompson CB: The
molecular determinants of de novo nucleotide biosynthesis in cancer
cells. Curr Opin Genet Dev. 19:32–37. 2009.PubMed/NCBI View Article : Google Scholar
|
34
|
Wieman HL, Wofford JA and Rathmell JC:
Cytokine stimulation promotes glucose uptake via
phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and
trafficking. Mol Biol Cell. 18:1437–1446. 2007.PubMed/NCBI View Article : Google Scholar
|
35
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002.PubMed/NCBI View
Article : Google Scholar
|
36
|
Zhang X, Zhao H, Li Y, Xia D, Yang L, Ma Y
and Li H: The role of YAP/TAZ activity in cancer metabolic
reprogramming. Mol Cancer. 17(134)2018.PubMed/NCBI View Article : Google Scholar
|