1
|
Lin DC, Hao JJ, Nagata Y, Xu L, Shang L,
Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al: Genomic and
molecular characterization of esophageal squamous cell carcinoma.
Nat Genet. 46:467–473. 2014.PubMed/NCBI View
Article : Google Scholar
|
2
|
Jain R, Gupta S, Pasricha N, Faujdar M,
Sharma M and Mishra P: ESCC with metastasis in the young age of
caustic ingestion of shortest duration. J Gastrointest Cancer.
41:93–95. 2010.PubMed/NCBI View Article : Google Scholar
|
3
|
Liu Q, Liang M, Liu T, Vuitton L, Zheng S,
Gao X, Lu M, Li X, Sheyhidin I and Lu X: M2 isoform of pyruvate
kinase (PKM2) is upregulated in Kazakh's ESCC and promotes
proliferation and migration of ESCC cells. Tumour Biol.
37:2665–2672. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Encinas de la Iglesia J, Corral de la
Calle MA, Fernandez Perez GC, Ruano Perez R and Alvarez Delgado A:
Esophageal cancer: Anatomic particularities, staging, and imaging
techniques. Radiologia. 58:352–365. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Liu B, Bo Y, Wang K, Liu Y, Tang X, Zhao
Y, Zhao E and Yuan L: Concurrent neoadjuvant chemoradiotherapy
could improve survival outcomes for patients with esophageal
cancer: A meta-analysis based on random clinical trials.
Oncotarget. 8:20410–20417. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhou YX, Liu Q, Wang H, Ding F and Ma YQ:
The expression and prognostic value of SOX2, β-catenin and survivin
in esophageal squamous cell carcinoma. Future Oncol. 15:4181–4195.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen Q, Zheng PS and Yang WT:
EZH2-mediated repression of GSK-3β and TP53 promotes Wnt/β-catenin
signaling-dependent cell expansion in cervical carcinoma.
Oncotarget. 7:36115–36129. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Moon HE, Cheon H, Chun KH, Lee SK, Kim YS,
Jung BK, Park JA, Kim SH, Jeong JW and Lee MS:
Metastasis-associated protein 1 enhances angiogenesis by
stabilization of HIF-1alpha. Oncol Rep. 16:929–935. 2006.PubMed/NCBI
|
9
|
Ezhkova E, Pasolli HA, Parker JS, Stokes
N, Su IH, Hannon G, Tarakhovsky A and Fuchs E: Ezh2 orchestrates
gene expression for the stepwise differentiation of tissue-specific
stem cells. Cell. 136:1122–1135. 2009.PubMed/NCBI View Article : Google Scholar
|
10
|
Su IH, Basavaraj A, Krutchinsky AN, Hobert
O, Ullrich A, Chait BT and Tarakhovsky A: Ezh2 controls B cell
development through histone H3 methylation and Igh rearrangement.
Nat Immunol. 4:124–131. 2003.PubMed/NCBI View
Article : Google Scholar
|
11
|
Nienstedt JC, Schroeder C, Clauditz T,
Simon R, Sauter G, Muenscher A, Blessmann M, Hanken H and Pflug C:
EZH2 overexpression in head and neck cancer is related to lymph
node metastasis. J Oral Pathol Med. 47:240–245. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Feng H, Yu Z, Tian Y, Lee YY, Li MS, Go
MY, Cheung YS, Lai PB, Chan AM, To KF, et al: A CCRK-EZH2
epigenetic circuitry drives hepatocarcinogenesis and associates
with tumor recurrence and poor survival of patients. J Hepatol.
62:1100–1111. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Parvani JG and Schiemann WP: Sox4, EMT
programs, and the metastatic progression of breast cancers:
Mastering the masters of EMT. Breast Cancer Res.
15(R72)2013.PubMed/NCBI View
Article : Google Scholar
|
14
|
Tiwari N, Tiwari VK, Waldmeier L, Balwierz
PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schubeler D, van
Nimwegen E and Christofori G: Sox4 is a master regulator of
epithelial-mesenchymal transition by controlling Ezh2 expression
and epigenetic reprogramming. Cancer Cell. 23:768–783.
2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Lin L, Wang Z, Jin H, Shi H, Lu Z and Qi
Z: miR-212/132 is epigenetically downregulated by
SOX4/EZH2-H3K27me3 feedback loop in ovarian cancer cells. Biol: Nov
3, 2016 (Epub ahead of print).
|
16
|
Moreno CS: SOX4: The unappreciated
oncogene. Semin Cancer Biol. 67:57–64. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
David CJ, Huang YH, Chen M, Su J, Zou Y,
Bardeesy N, Iacobuzio-Donahue CA and Massague J: TGF-β tumor
suppression through a lethal EMT. Cell. 164:1015–1030.
2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang L, Zhang J, Yang X, Chang YW, Qi M,
Zhou Z, Zhang J and Han B: SOX4 is associated with poor prognosis
in prostate cancer and promotes epithelial-mesenchymal transition
in vitro. Prostate Cancer Prostatic Dis. 16:301–307.
2013.PubMed/NCBI View Article : Google Scholar
|
19
|
Jafarnejad SM, Wani AA, Martinka M and Li
G: Prognostic significance of Sox4 expression in human cutaneous
melanoma and its role in cell migration and invasion. Am J Pathol.
177:2741–2752. 2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang J, Liang Q, Lei Y, Yao M, Li L, Gao
X, Feng J, Zhang Y, Gao H, Liu DX, et al: SOX4 induces
epithelial-mesenchymal transition and contributes to breast cancer
progression. Cancer Res. 72:4597–4608. 2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Koumangoye RB, Andl T, Taubenslag KJ,
Zilberman ST, Taylor CJ, Loomans HA and Andl CD: SOX4 interacts
with EZH2 and HDAC3 to suppress microRNA-31 in invasive esophageal
cancer cells. Mol Cancer. 14(24)2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Nan P, Wang T, Li C, Li H, Wang J, Zhang
J, Dou N, Zhan Q, Wang H and Qian H: MTA1 promotes tumorigenesis
and development of esophageal squamous cell carcinoma via
activating the MEK/ERK/p90RSK signaling pathway. Carcinogenesis.
41:1263–1272. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Hannafon BN, Gin AL, Xu YF, Bruns M,
Calloway CL and Ding WQ: Metastasis-associated protein 1 (MTA1) is
transferred by exosomes and contributes to the regulation of
hypoxia and estrogen signaling in breast cancer cells. Cell Commun
Signal. 17(13)2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Deng L, Tang J, Yang H, Cheng C, Lu S,
Jiang R and Sun B: MTA1 modulated by miR-30e contributes to
epithelial-to-mesenchymal transition in hepatocellular carcinoma
through an ErbB2-dependent pathway. Oncogene. 36:3976–3985.
2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Liu J, Xu D, Wang H, Zhang Y, Chang Y,
Zhang J, Wang J, Li C, Liu H, Zhao M, et al: The subcellular
distribution and function of MTA1 in cancer differentiation.
Oncotarget. 5:5153–5164. 2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Xue H, Wang H, Liu J, Liu H, Li C, Han L,
Lin C, Zhan Q, Zhao Z and Qian H: MTA1 downregulation inhibits
malignant potential in a small cell lung cancer cell line. Oncol
Rep. 33:885–892. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Dhar S, Kumar A, Gomez CR, Akhtar I,
Hancock JC, Lage JM, Pound CR and Levenson AS: MTA1-activated
Epi-microRNA-22 regulates E-cadherin and prostate cancer
invasiveness. FEBS Lett. 591:924–933. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Guo N, Shen G, Zhang Y, Moustafa AA, Ge D
and You Z: Interleukin-17 promotes migration and invasion of human
cancer cells through upregulation of MTA1 expression. Front Oncol.
9(546)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Yoo YG, Kong G and Lee MO:
Metastasis-associated protein 1 enhances stability of
hypoxia-inducible factor-1alpha protein by recruiting histone
deacetylase 1. EMBO J. 25:1231–1241. 2006.PubMed/NCBI View Article : Google Scholar
|
30
|
Weng W, Yin J, Zhang Y, Qiu J and Wang X:
Metastasis-associated protein 1 promotes tumor invasion by
downregulation of E-cadherin. Int J Oncol. 44:812–818.
2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Song Q, Wang B, Liu M, Ren Z, Fu Y, Zhang
P and Yang M: MTA1 promotes the invasion and migration of oral
squamous carcinoma by inducing epithelial-mesenchymal transition
via the hedgehog signaling pathway. Exp Cell Res.
382(111450)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Edge S, Byrd DR and Compton CC: AJCC
Cancer Staging Manual (7th edition). Springer International
Publishing: American Joint Commission on Cancer, 2009.
|
33
|
Zhou N, Wang H, Liu H, Xue H, Lin F, Meng
X, Liang A, Zhao Z, Liu Y and Qian H: MTA1-upregulated EpCAM is
associated with metastatic behaviors and poor prognosis in lung
cancer. J Exp Clin Cancer Res. 34(157)2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Matsubara T, Toyokawa G, Takada K,
Kinoshita F, Kozuma Y, Akamine T, Shimokawa M, Haro A, Osoegawa A,
Tagawa T and Mori M: The association and prognostic impact of
enhancer of zeste homologue 2 expression and epithelial-mesenchymal
transition in resected lung adenocarcinoma. PLoS One.
14(e0215103)2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Toh Y and Nicolson GL: Properties and
clinical relevance of MTA1 protein in human cancer. Cancer
Metastasis Rev. 33:891–900. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Wang Q, Wang F, Lv J, Xin J, Xie L, Zhu W,
Tang Y, Li Y, Zhao X, Wang Y, et al: Interactive online consensus
survival tool for esophageal squamous cell carcinoma prognosis
analysis. Oncol Lett. 18:1199–1206. 2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Li L, Liu J, Xue H, Li C, Liu Q, Zhou Y,
Wang T, Wang H, Qian H and Wen T: A TGF-β-MTA1-SOX4-EZH2 signaling
axis drives epithelial-mesenchymal transition in tumor metastasis.
Oncogene. 39:2125–2139. 2020.PubMed/NCBI View Article : Google Scholar
|