1
|
Saeedi P, Petersohn I, Salpea P, Malanda
B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA,
Ogurtsova K, et al: Global and regional diabetes prevalence
estimates for 2019 and projections for 2030 and 2045: Results from
the International Diabetes Federation Diabetes Atlas, 9th edition.
Diabetes Res Clin Pract. 157(107843)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Ogurtsova K, da Rocha Fernandes JD, Huang
Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE and
Makaroff LE: IDF diabetes atlas: Global estimates for the
prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract.
128:40–50. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Harding JL, Pavkov ME, Magliano DJ, Shaw
JE and Gregg EW: Global trends in diabetes complications: A review
of current evidence. Diabetologia. 62:3–16. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Javed S, Alam U and Malik RA: Burning
through the pain: Treatments for diabetic neuropathy. Diabetes Obes
Metab. 17:1115–1125. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Callaghan BC, Cheng HT, Stables CL, Smith
AL and Feldman EL: Diabetic neuropathy: Clinical manifestations and
current treatments. Lancet Neurol. 11:521–534. 2012.PubMed/NCBI View Article : Google Scholar
|
6
|
Pasnoor M, Dimachkie MM, Kluding P and
Barohn RJ: Diabetic neuropathy part 1: Overview and symmetric
phenotypes. Neurol Clin. 31:425–445. 2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Calandre EP, Rico-Villademoros F and Slim
M: Alpha2 delta ligands, gabapentin, pregabalin and
mirogabalin: A review of their clinical pharmacology and
therapeutic use. Expert Rev Neurother. 16:1263–1277.
2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Nawroth PP, Bendszus M, Pham M, Jende J,
Heiland S, Ries S, Schumann C, Schmelz M, Schuh-Hofer S, Treede RD,
et al: The quest for more research on painful diabetic neuropathy.
Neuroscience. 387:28–37. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Matough FA, Budin SB, Hamid ZA, Alwahaibi
N and Mohamed J: The role of oxidative stress and antioxidants in
diabetic complications. Sultan Qaboos Univ Med J. 12:5–18.
2012.PubMed/NCBI View
Article : Google Scholar
|
10
|
Piwkowska A, Rogacka D, Audzeyenka I,
Jankowski M and Angielski S: High glucose concentration affects the
oxidant-antioxidant balance in cultured mouse podocytes. J Cell
Biochem. 112:1661–1672. 2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Piconi L, Quagliaro L and Ceriello A:
Oxidative stress in diabetes. Clin Chem Lab Med. 41:1144–1149.
2003.PubMed/NCBI View Article : Google Scholar
|
12
|
Yang H, Jin X, Kei Lam CW and Yan SK:
Oxidative stress and diabetes mellitus. Clin Chem Lab Med.
49:1773–1782. 2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Pop-Busui R, Marinescu V, Van Huysen C, Li
F, Sullivan K, Greene DA, Larkin D and Stevens MJ: Dissection of
metabolic, vascular, and nerve conduction interrelationships in
experimental diabetic neuropathy by cyclooxygenase inhibition and
acetyl-L-carnitine administration. Diabetes. 51:2619–2628.
2002.PubMed/NCBI View Article : Google Scholar
|
14
|
Smith WL, DeWitt DL and Garavito RM:
Cyclooxygenases: Structural, cellular, and molecular biology. Annu
Rev Biochem. 69:145–182. 2000.PubMed/NCBI View Article : Google Scholar
|
15
|
Kellogg AP and Pop-Busui R: Peripheral
nerve dysfunction in experimental diabetes is mediated by
cyclooxygenase-2 and oxidative stress. Antioxid Redox Signal.
7:1521–1529. 2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Sies H, Berndt C and Jones DP: Oxidative
stress. Annu Rev Biochem. 86:715–748. 2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Li M, Yu H, Pan H, Zhou X, Ruan Q, Kong D,
Chu Z, Li H, Huang J, Huang X, et al: Nrf2 Suppression delays
diabetic wound healing through sustained oxidative stress and
inflammation. Front Pharmacol. 10(1099)2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Kumar A and Mittal R: Nrf2: A potential
therapeutic target for diabetic neuropathy. Inflammopharmacology.
25:393–402. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Chen JY, Wang FB, Xu H, Xu LF, Chen D, Liu
WH, Mu X and Wen YQ: High glucose promotes prostate cancer cells
apoptosis via Nrf2/ARE signaling pathway. Eur Rev Med Pharmacol
Sci. 23 (Suppl 3):S192–S200. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Luo C, Urgard E, Vooder T and Metspalu A:
The role of COX-2 and Nrf2/ARE in anti-inflammation and
antioxidative stress: Aging and anti-aging. Med Hypotheses.
77:174–178. 2011.PubMed/NCBI View Article : Google Scholar
|
21
|
Kellogg AP, Cheng HT and Pop-Busui R:
Cyclooxygenase-2 pathway as a potential therapeutic target in
diabetic peripheral neuropathy. Curr Drug Targets. 9:68–76.
2008.PubMed/NCBI View Article : Google Scholar
|
22
|
Saxena P, Sharma PK and Purohit P: A
journey of celecoxib from pain to cancer. Prostaglandins Other
Lipid Mediat. 147(106379)2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Tindall E: Celecoxib for the treatment of
pain and inflammation: The preclinical and clinical results. J Am
Osteopath Assoc. 99 (Suppl 11):S13–S17. 1999.PubMed/NCBI
|
24
|
Vane JR, Mitchell JA, Appleton I,
Tomlinson A, Bishop-Bailey D, Croxtall J and Willoughby DA:
Inducible isoforms of cyclooxygenase and nitric-oxide synthase in
inflammation. Proc Natl Acad Sci USA. 91:2046–2050. 1994.PubMed/NCBI View Article : Google Scholar
|
25
|
Hawkey CJ: COX-2 inhibitors. Lancet.
353:307–314. 1999.PubMed/NCBI View Article : Google Scholar
|
26
|
Mi Y, Zhang X, Zhang F, Qi J, Gao H, Huang
D, Li L, Zhang H and Du X: The role of potassium channel activation
in celecoxib-induced analgesic action. PLoS One.
8(e54797)2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Suarez-Mendez S, Tovilla-Zarate CA,
Ortega-Varela LF, Bermudez-Ocaña DY, Blé-Castillo JL,
González-Castro TB, Zetina-Esquivel AM, Diaz-Zagoya JC and Esther
Juárez-Rojop I: Isobolographic analyses of proglumide-celecoxib
interaction in rats with painful diabetic neuropathy. Drug Dev Res.
78:116–123. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Juárez-Rojop IE, Morales-Hernández PE,
Tovilla-Zárate CA, Bermúdez-Ocaña DY, Torres-Lopez JE, Ble-Castillo
JL, Díaz-Zagoya JC and Granados-Soto V: Celecoxib reduces
hyperalgesia and tactile allodynia in diabetic rats. Pharmacol Rep.
67:545–552. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Bartel DP: Metazoan microRNAs. Cell.
173:20–51. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Correia de Sousa M, Gjorgjieva M, Dolicka
D, Sobolewski C and Foti M: Deciphering miRNAs' Action through
miRNA editing. Int J Mol Sci. 20(6249)2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Huntzinger E and Izaurralde E: Gene
silencing by microRNAs: Contributions of translational repression
and mRNA decay. Nat Rev Genet. 12:99–110. 2011.PubMed/NCBI View Article : Google Scholar
|
33
|
Mann M, Mehta A, Zhao JL, Lee K, Marinov
GK, Garcia-Flores Y, Lu LF, Rudensky AY and Baltimore D: An
NF-κB-microRNA regulatory network tunes macrophage inflammatory
responses. Nat Commun. 8(851)2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Worm J, Stenvang J, Petri A, Frederiksen
KS, Obad S, Elmén J, Hedtjärn M, Straarup EM, Hansen JB and
Kauppinen S: Silencing of microRNA-155 in mice during acute
inflammatory response leads to derepression of c/ebp Beta and
down-regulation of G-CSF. Nucleic Acids Res. 37:5784–5792.
2009.PubMed/NCBI View Article : Google Scholar
|
35
|
El-Lithy GM, El-Bakly WM, Matboli M,
Abd-Alkhalek HA, Masoud SI and Hamza M: Prophylactic L-arginine and
ibuprofen delay the development of tactile allodynia and suppress
spinal miR-155 in a rat model of diabetic neuropathy. Transl Res.
177:85–97. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Chen J, Liu W, Yi H, Hu X, Peng L and Yang
F: MicroRNA-155 mimics ameliorates nerve conduction velocities and
suppresses hyperglycemia-induced pro-inflammatory genes in diabetic
peripheral neuropathic mice. Am J Transl Res. 11:3905–3918.
2019.PubMed/NCBI
|
37
|
Chen T, Li H, Yin Y, Zhang Y, Liu Z and
Liu H: Interactions of Notch1 and TLR4 signaling pathways in DRG
neurons of in vivo and in vitro models of diabetic neuropathy. Sci
Rep. 7(14923)2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
39
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42 (Database Issue):D92–D97. 2014.PubMed/NCBI View Article : Google Scholar
|
40
|
Guo C, Quobatari A, Shangguan Y, Hong S
and Wiley JW: Diabetic autonomic neuropathy: Evidence for apoptosis
in situ in the rat. Neurogastroenterol Motil. 16:335–345.
2004.PubMed/NCBI View Article : Google Scholar
|
41
|
Suzuki N, Sawada K, Takahashi I, Matsuda
M, Fukui S, Tokuyasu H, Shimizu H, Yokoyama J, Akaike A and Nakaji
S: Association between polyunsaturated fatty acid and reactive
oxygen species production of neutrophils in the general population.
Nutrients. 12(3222)2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Gehrmann W, Würdemann W, Plötz T, Jörns A,
Lenzen S and Elsner M: Antagonism between saturated and unsaturated
fatty acids in ROS mediated lipotoxicity in rat insulin-producing
cells. Cell Physiol Biochem. 36:852–865. 2015.PubMed/NCBI View Article : Google Scholar
|
43
|
Valko M, Rhodes CJ, Moncol J, Izakovic M
and Mazur M: Free radicals, metals and antioxidants in oxidative
stress-induced cancer. Chem Biol Interact. 160:1–40.
2006.PubMed/NCBI View Article : Google Scholar
|
44
|
He L, He T, Farrar S, Ji L, Liu T and Ma
X: Antioxidants maintain cellular redox homeostasis by elimination
of reactive oxygen species. Cell Physiol Biochem. 44:532–553.
2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Liu D, Zhang H, Gu W and Zhang M: Effects
of exposure to high glucose on primary cultured hippocampal
neurons: Involvement of intracellular ROS accumulation. Neurol Sci.
35:831–837. 2014.PubMed/NCBI View Article : Google Scholar
|
46
|
Russell JW, Berent-Spillson A, Vincent AM,
Freimann CL, Sullivan KA and Feldman EL: Oxidative injury and
neuropathy in diabetes and impaired glucose tolerance. Neurobiol
Dis. 30:420–429. 2008.PubMed/NCBI View Article : Google Scholar
|
47
|
Zhang C, Wang F, Zhang Y, Kang Y, Wang H,
Si M, Su L, Xin X, Xue F, Hao F, et al: Celecoxib prevents pressure
overload-induced cardiac hypertrophy and dysfunction by inhibiting
inflammation, apoptosis and oxidative stress. J Cell Mol Med.
20:116–127. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Crivelli B, Bari E, Perteghella S,
Catenacci L, Sorrenti M, Mocchi M, Faragò S, Tripodo G, Prina-Mello
A and Torre ML: Silk fibroin nanoparticles for celecoxib and
curcumin delivery: ROS-scavenging and anti-inflammatory activities
in an in vitro model of osteoarthritis. Eur J Pharm Biopharm.
137:37–45. 2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Huang Y, Liu J, Wang LZ, Zhang WY and Zhu
XZ: Neuroprotective effects of cyclooxygenase-2 inhibitor celecoxib
against toxicity of LPS-stimulated macrophages toward motor
neurons. Acta Pharmacol Sin. 26:952–958. 2005.PubMed/NCBI View Article : Google Scholar
|
50
|
Griso O and Puccio H: Primary cultures of
pure embryonic dorsal root ganglia sensory neurons as a new
cellular model for Friedreich's Ataxia. Methods Mol Biol.
2056:241–253. 2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Nascimento AI, Mar FM and Sousa MM: The
intriguing nature of dorsal root ganglion neurons: Linking
structure with polarity and function. Prog Neurobiol. 168:86–103.
2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Kaval Oğuz E: Neuronal survival of DRG
neurons after neurite transection in vitro promotes by nerve growth
factor and brain derived neurotrophic factor. Cell Mol Biol
(Noisy-le-Grand). 64:41–46. 2018.PubMed/NCBI
|
53
|
Yang Y and Gao L: Celecoxib alleviates
memory deficits by downregulation of COX-2 expression and
upregulation of the BDNF-TrkB signaling pathway in a diabetic rat
model. J Mol Neurosci. 62:188–198. 2017.PubMed/NCBI View Article : Google Scholar
|
54
|
Sztanek F, Molnárné Molnár Á and Balogh Z:
The role of oxidative stress in the development of diabetic
neuropathy. Orv Hetil. 157:1939–1946. 2016.PubMed/NCBI View Article : Google Scholar : (In Hu).
|
55
|
Mittal R, Kumar A, Singh DP, Bishnoi M and
Nag TC: Ameliorative potential of rutin in combination with
nimesulide in STZ model of diabetic neuropathy: Targeting
Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology.
26:755–768. 2018.PubMed/NCBI View Article : Google Scholar
|
56
|
Nasiry D, Khalatbary AR, Ahmadvand H,
Talebpour Amiri F and Akbari E: Protective effects of methanolic
extract of Juglans regia L. leaf on streptozotocin-induced
diabetic peripheral neuropathy in rats. BMC Complement Altern Med.
17(476)2017.PubMed/NCBI View Article : Google Scholar
|
57
|
Joshi RP, Negi G, Kumar A, Pawar YB,
Munjal B, Bansal AK and Sharma SS: SNEDDS curcumin formulation
leads to enhanced protection from pain and functional deficits
associated with diabetic neuropathy: An insight into its mechanism
for neuroprotection. Nanomedicine. 9:776–785. 2013.PubMed/NCBI View Article : Google Scholar
|
58
|
Bujalska-Zadrożny M, de Cordé A and Pawlik
K: Influence of nitric oxide synthase or cyclooxygenase inhibitors
on cannabinoids activity in streptozotocin-induced neuropathy.
Pharmacol Rep. 67:209–216. 2015.PubMed/NCBI View Article : Google Scholar
|
59
|
Smith WL, Garavito RM and DeWitt DL:
Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2.
J Biol Chem. 271:33157–33160. 1996.PubMed/NCBI View Article : Google Scholar
|
60
|
Lin J, Zhang L and Yang H: Perioperative
administration of selective cyclooxygenase-2 inhibitors for
postoperative pain management in patients after total knee
arthroplasty. J Arthroplasty. 28:207–213. 2013.PubMed/NCBI View Article : Google Scholar
|
61
|
Uchida K: A lipid-derived endogenous
inducer of COX-2: A bridge between inflammation and oxidative
stress. Mol Cells. 25:347–351. 2008.PubMed/NCBI
|
62
|
Vosooghi M and Amini M: The discovery and
development of cyclooxygenase-2 inhibitors as potential anticancer
therapies. Expert Opin Drug Discov. 9:255–267. 2014.PubMed/NCBI View Article : Google Scholar
|
63
|
Groeger AL, Cipollina C, Cole MP, Woodcock
SR, Bonacci G, Rudolph TK, Rudolph V, Freeman BA and Schopfer FJ:
Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3
fatty acids. Nat Chem Biol. 6:433–441. 2010.PubMed/NCBI View Article : Google Scholar
|
64
|
Loboda A, Damulewicz M, Pyza E, Jozkowicz
A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative
stress response and diseases: An evolutionarily conserved
mechanism. Cell Mol Life Sci. 73:3221–3247. 2016.PubMed/NCBI View Article : Google Scholar
|
65
|
Wong TY, Li F, Lin SM, Chan FL, Chen S and
Leung LK: Celecoxib increases miR-222 while deterring
aromatase-expressing breast tumor growth in mice. BMC Cancer.
14(426)2014.PubMed/NCBI View Article : Google Scholar
|
66
|
Liu X, Wu Y, Zhou Z, Huang M, Deng W, Wang
Y, Zhou X, Chen L, Li Y, Zeng T, et al: Celecoxib inhibits the
epithelial-to-mesenchymal transition in bladder cancer via the
miRNA-145/TGFBR2/Smad3 axis. Int J Mol Med. 44:683–693.
2019.PubMed/NCBI View Article : Google Scholar
|
67
|
Woeller CF, Roztocil E, Hammond C and
Feldon SE: TSHR signaling stimulates proliferation through PI3K/Akt
and induction of miR-146a and miR-155 in thyroid eye disease
orbital fibroblasts. Invest Ophthalmol Vis Sci. 60:4336–4345.
2019.PubMed/NCBI View Article : Google Scholar
|
68
|
Xu L and Leng H, Shi X, Ji J, Fu J and
Leng H: miR-155 promotes cell proliferation and inhibits apoptosis
by PTEN signaling pathway in the psoriasis. Biomed Pharmacother.
90:524–530. 2017.PubMed/NCBI View Article : Google Scholar
|
69
|
Lin X, Jia J, Du T, Li W, Wang X, Wei J,
Lin X, Zeng H, Yao L, Chen X, et al: Overexpression of miR-155 in
the liver of transgenic mice alters the expression profiling of
hepatic genes associated with lipid metabolism. PLoS One.
10(e0118417)2015.PubMed/NCBI View Article : Google Scholar
|