1
|
International Diabetes Federation: IDF
Diabetes Atlas. 6th edition, 2013.
|
2
|
Hu C and Jia W: Diabetes in China:
Epidemiology and genetic risk factors and their clinical utility in
personalized medication. Diabetes. 67:3–11. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Ramos-Rodríguez M, Raurell-Vila H, Colli
ML, Alvelos MI, Subirana-Granés M, Juan-Mateu J, Norris R,
Turatsinze JV, Nakayasu ES, Webb-Robertson BM, et al: The impact of
proinflammatory cytokines on the β-cell regulatory landscape
provides insights into the genetics of type 1 diabetes. Nat Genet.
51:1588–1595. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Rorsman P and Ashcroft FM: Pancreatic
β-cell electrical activity and insulin secretion: Of mice and men.
Physiol Rev. 98:117–214. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Yang BY, Fan S, Thiering E, Seissler J,
Nowak D, Dong GH and Heinrich J: Ambient air pollution and
diabetes: A systematic review and meta-analysis. Environ Res.
180(108817)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhang H, Dong H, Ren M, Liang Q, Shen X,
Wang Q, Yu L, Lin H, Luo Q, Chen W, et al: Ambient air pollution
exposure and gestational diabetes mellitus in Guangzhou, China: A
prospective cohort study. Sci Total Environ.
699(134390)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Renzi M, Cerza F, Gariazzo C, Agabiti N,
Cascini S, Di Domenicantonio R, Davoli M, Forastiere F and Cesaroni
G: Air pollution and occurrence of type 2 diabetes in a large
cohort study. Environ Int. 112:68–76. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Nogueira JB: Air pollution and
cardiovascular disease. Rev Port Cardiol. 28:715–733.
2009.PubMed/NCBI
|
9
|
Kodros JK, Volckens J, Jathar SH and
Pierce JR: Ambient particulate matter size distributions drive
regional and global variability in particle deposition in the
respiratory tract. Geohealth. 2:298–312. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Li Y, Sun B, Shi Y, Jiang J, Du Z, Chen R,
Duan J and Sun Z: Subacute exposure of PM2.5 induces airway
inflammation through inflammatory cell infiltration and cytokine
expression in rats. Chemosphere. 251(126423)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Abramson MJ, Wigmann C, Altug H and
Schikowski T: Ambient air pollution is associated with airway
inflammation in older women: A nested cross-sectional analysis. BMJ
Open Respir Res. 7(7)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Coogan PF, White LF, Yu J, Burnett RT,
Seto E, Brook RD, Palmer JR, Rosenberg L and Jerrett M: PM2.5 and
diabetes and hypertension incidence in the Black Women's Health
Study. Epidemiology. 27:202–210. 2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu C, Yang C, Zhao Y, Ma Z, Bi J, Liu Y,
Meng X, Wang Y, Cai J, Chen R, et al: Associations between
long-term exposure to ambient particulate air pollution and type 2
diabetes prevalence, blood glucose and glycosylated hemoglobin
levels in China. Environ Int. 92-93:416–421. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Weinmayr G, Hennig F, Fuks K, Nonnemacher
M, Jakobs H, Möhlenkamp S, Erbel R, Jöckel KH, Hoffmann B and
Moebus S: Heinz Nixdorf Recall Investigator Group. Long-term
exposure to fine particulate matter and incidence of type 2
diabetes mellitus in a cohort study: Effects of total and
traffic-specific air pollution. Environ Health.
14(53)2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Bekki K, Ito T, Yoshida Y, He C,
Arashidani K, He M, Sun G, Zeng Y, Sone H, Kunugita N, et al: PM2.5
collected in China causes inflammatory and oxidative stress
responses in macrophages through the multiple pathways. Environ
Toxicol Pharmacol. 45:362–369. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Sun Q, Yue P, Deiuliis JA, Lumeng CN,
Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy
S, et al: Ambient air pollution exaggerates adipose inflammation
and insulin resistance in a mouse model of diet-induced obesity.
Circulation. 119:538–546. 2009.PubMed/NCBI View Article : Google Scholar
|
17
|
Liu C, Xu X, Bai Y, Zhong J, Wang A, Sun
L, Kong L, Ying Z, Sun Q and Rajagopalan S: Particulate Air
pollution mediated effects on insulin resistance in mice are
independent of CCR2. Part Fibre Toxicol. 14(6)2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Tomita T: Apoptosis of pancreatic β-cells
in Type 1 diabetes. Bosn J Basic Med Sci. 17:183–193.
2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Fantuzzi G: Adipose tissue, adipokines,
and inflammation. J Allergy Clin Immunol. 115:911–919; quiz 920.
2005.PubMed/NCBI View Article : Google Scholar
|
20
|
Jager J, Grémeaux T, Cormont M, Le
Marchand-Brustel Y and Tanti JF: Interleukin-1beta-induced insulin
resistance in adipocytes through down-regulation of insulin
receptor substrate-1 expression. Endocrinology. 148:241–251.
2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Wasserman DH, Wang TJ and Brown NJ: The
vasculature in prediabetes. Circ Res. 122:1135–1150.
2018.PubMed/NCBI View Article : Google Scholar
|
22
|
National Research Council (US) Institute
for Laboratory Animal Research: Guide for the Care and Use of
Laboratory Animals. National Academies Press, Washington, DC, USA,
1996.
|
23
|
Sioutas C, Koutrakis P and Burton RM: A
technique to expose animals to concentrated fine ambient aerosols.
Environ Health Perspect. 103:172–177. 1995.PubMed/NCBI View Article : Google Scholar
|
24
|
Chen LC and Nadziejko C: Effects of
subchronic exposures to concentrated ambient particles (CAPs) in
mice. V. CAPs exacerbate aortic plaque development in
hyperlipidemic mice. Inhal Toxicol. 17:217–224. 2005.PubMed/NCBI View Article : Google Scholar
|
25
|
Imrich A, Ning Y and Kobzik L: Insoluble
components of concentrated air particles mediate alveolar
macrophage responses in vitro. Toxicol Appl Pharmacol. 167:140–150.
2000.PubMed/NCBI View Article : Google Scholar
|
26
|
Arhi CS, Bottle A, Burns EM, Clarke JM,
Aylin P, Ziprin P and Darzi A: Comparison of cancer diagnosis
recording between the Clinical Practice Research Datalink, Cancer
Registry and Hospital Episodes Statistics. Cancer Epidemiol.
57:148–157. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Wallace TM, Levy JC and Matthews DR: Use
and abuse of HOMA modeling. Diabetes Care. 27:1487–1495.
2004.PubMed/NCBI View Article : Google Scholar
|
28
|
Yip WCY, Sequeira IR, Plank LD and Poppitt
SD: Prevalence of Pre-Diabetes across Ethnicities: A review of
impaired fasting glucose (IFG) and impaired glucose tolerance (IGT)
for classification of dysglycaemia. Nutrients. 9(9)2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Ma X, Jia H, Sha T, An J and Tian R:
Spatial and seasonal characteristics of particulate matter and
gaseous pollution in China: Implications for control policy.
Environ Pollut. 248:421–428. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Carrero JA, McCarthy DP, Ferris ST, Wan X,
Hu H, Zinselmeyer BH, Vomund AN and Unanue ER: Resident macrophages
of pancreatic islets have a seminal role in the initiation of
autoimmune diabetes of NOD mice. Proc Natl Acad Sci USA.
114:E10418–E10427. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Rakotoarivelo V, Lacraz G, Mayhue M, Brown
C, Rottembourg D, Fradette J, Ilangumaran S, Menendez A, Langlois
MF and Ramanathan S: Inflammatory cytokine profiles in visceral and
subcutaneous adipose tissues of obese patients undergoing bariatric
surgery reveal lack of correlation with obesity or diabetes.
EBioMedicine. 30:237–247. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Coppack SW: Pro-inflammatory cytokines and
adipose tissue. Proc Nutr Soc. 60:349–356. 2001.PubMed/NCBI View Article : Google Scholar
|
33
|
Wentworth JM, Naselli G, Brown WA, Doyle
L, Phipson B, Smyth GK, Wabitsch M, O'Brien PE and Harrison LC:
Pro-inflammatory CD11c+CD206+ adipose tissue
macrophages are associated with insulin resistance in human
obesity. Diabetes. 59:1648–1656. 2010.PubMed/NCBI View Article : Google Scholar
|
34
|
Biden TJ, Boslem E, Chu KY and Sue N:
Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2
diabetes mellitus. Trends Endocrinol Metab. 25:389–398.
2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Pope CA III, Bhatnagar A, McCracken JP,
Abplanalp W, Conklin DJ and O'Toole T: Exposure to fine particulate
air pollution is associated with endothelial injury and systemic
inflammation. Circ Res. 119:1204–1214. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Bai Y and Sun Q: Fine particulate matter
air pollution and atherosclerosis: Mechanistic insights. Biochim
Biophys Acta. 1860:2863–2868. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Tian Y, Xiang X, Wu Y, Cao Y, Song J, Sun
K, Liu H and Hu Y: Fine particulate air pollution and first
hospital admissions for ischemic stroke in Beijing, China. Sci Rep.
7(3897)2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Fleisch AF, Gold DR, Rifas-Shiman SL,
Koutrakis P, Schwartz JD, Kloog I, Melly S, Coull BA, Zanobetti A,
Gillman MW, et al: Air pollution exposure and abnormal glucose
tolerance during pregnancy: The project Viva cohort. Environ Health
Perspect. 122:378–383. 2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Pearson JF, Bachireddy C, Shyamprasad S,
Goldfine AB and Brownstein JS: Association between fine particulate
matter and diabetes prevalence in the U.S. Diabetes Care.
33:2196–2201. 2010.PubMed/NCBI View Article : Google Scholar
|
40
|
Chuang KJ, Yan YH, Chiu SY and Cheng TJ:
Long-term air pollution exposure and risk factors for
cardiovascular diseases among the elderly in Taiwan. Occup Environ
Med. 68:64–68. 2011.PubMed/NCBI View Article : Google Scholar
|
41
|
Khafaie MA, Salvi SS, Ojha A, Khafaie B,
Gore SD and Yajnik CS: Particulate matter and markers of glycemic
control and insulin resistance in type 2 diabetic patients: Result
from Wellcome Trust Genetic study. J Expo Sci Environ Epidemiol.
28:328–336. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Ding S, Yuan C, Si B, Wang M, Da S, Bai L
and Wu W: Combined effects of ambient particulate matter exposure
and a high-fat diet on oxidative stress and steatohepatitis in
mice. PLoS One. 14(e0214680)2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Rajagopalan S, Park B, Palanivel R,
Vinayachandran V, Deiuliis JA, Gangwar RS, Das L, Yin J, Choi Y,
Al-Kindi S, et al: Metabolic effects of air pollution exposure and
reversibility. J Clin Invest. 130:6034–6040. 2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Shoenfelt J, Mitkus RJ, Zeisler R, Spatz
RO, Powell J, Fenton MJ, Squibb KA and Medvedev AE: Involvement of
TLR2 and TLR4 in inflammatory immune responses induced by fine and
coarse ambient air particulate matter. J Leukoc Biol. 86:303–312.
2009.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhao C, Liao J, Chu W, Wang S, Yang T, Tao
Y and Wang G: Involvement of TLR2 and TLR4 and Th1/Th2 shift in
inflammatory responses induced by fine ambient particulate matter
in mice. Inhal Toxicol. 24:918–927. 2012.PubMed/NCBI View Article : Google Scholar
|
46
|
Jin Y, Wu W, Zhang W, Zhao Y, Wu Y, Ge G,
Ba Y, Guo Q, Gao T, Chi X, et al: Involvement of EGF receptor
signaling and NLRP12 inflammasome in fine particulate
matter-induced lung inflammation in mice. Environ Toxicol.
32:1121–1134. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Li Z, Wu Y, Chen HP, Zhu C, Dong L, Wang
Y, Liu H, Xu X, Zhou J, Wu Y, et al: MTOR suppresses environmental
particle-induced inflammatory response in macrophages. J Immunol.
200:2826–2834. 2018.PubMed/NCBI View Article : Google Scholar
|
48
|
Schulthess FT, Paroni F, Sauter NS, Shu L,
Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC and Maedler
K: CXCL10 impairs beta cell function and viability in diabetes
through TLR4 signaling. Cell Metab. 9:125–139. 2009.PubMed/NCBI View Article : Google Scholar
|
49
|
Lee T, Yun S, Jeong JH and Jung TW:
Asprosin impairs insulin secretion in response to glucose and
viability through TLR4/JNK-mediated inflammation. Mol Cell
Endocrinol. 486:96–104. 2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Liu C, Ying Z, Harkema J, Sun Q and
Rajagopalan S: Epidemiological and experimental links between air
pollution and type 2 diabetes. Toxicol Pathol. 41:361–373.
2013.PubMed/NCBI View Article : Google Scholar
|
51
|
Ma QY, Huang DY, Zhang HJ, Wang S and Chen
XF: Exposure to particulate matter 2.5 (PM2.5) induced
macrophage-dependent inflammation, characterized by increased
Th1/Th17 cytokine secretion and cytotoxicity. Int Immunopharmacol.
50:139–145. 2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Mancini SJ, White AD, Bijland S,
Rutherford C, Graham D, Richter EA, Viollet B, Touyz RM, Palmer TM
and Salt IP: Activation of AMP-activated protein kinase rapidly
suppresses multiple pro-inflammatory pathways in adipocytes
including IL-1 receptor-associated kinase-4 phosphorylation. Mol
Cell Endocrinol. 440:44–56. 2017.PubMed/NCBI View Article : Google Scholar
|
53
|
Aguirre V, Werner ED, Giraud J, Lee YH,
Shoelson SE and White MF: Phosphorylation of Ser307 in insulin
receptor substrate-1 blocks interactions with the insulin receptor
and inhibits insulin action. J Biol Chem. 277:1531–1537.
2002.PubMed/NCBI View Article : Google Scholar
|
54
|
Dou L, Wang S, Sun L, Huang X, Zhang Y,
Shen T, Guo J, Man Y, Tang W and Li J: Mir-338-3p mediates
Tnf-A-induced hepatic insulin resistance by targeting PP4r1 to
regulate PP4 expression. Cell Physiol Biochem. 41:2419–2431.
2017.PubMed/NCBI View Article : Google Scholar
|
55
|
Löfgren P, van Harmelen V, Reynisdottir S,
Näslund E, Rydén M, Rössner S and Arner P: Secretion of tumor
necrosis factor-alpha shows a strong relationship to
insulin-stimulated glucose transport in human adipose tissue.
Diabetes. 49:688–692. 2000.PubMed/NCBI View Article : Google Scholar
|
56
|
Russo L and Lumeng CN: Properties and
functions of adipose tissue macrophages in obesity. Immunology.
155:407–417. 2018.PubMed/NCBI View Article : Google Scholar
|