1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Schatten H: Brief overview of prostate
cancer statistics, grading, diagnosis and treatment strategies. Adv
Exp Med Biol. 1095:1–14. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Shah ET, Upadhyaya A, Philp LK, Tang T,
Skalamera D, Gunter J, Nelson CC, Williams ED and Hollier BG:
Repositioning ‘old’ drugs for new causes: Identifying new
inhibitors of prostate cancer cell migration and invasion. Clin Exp
Metastasis. 33:385–399. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Liu G, Ren F and Song Y: Upregulation of
SPOCK2 inhibits the invasion and migration of prostate cancer cells
by regulating the MT1-MMP/MMP2 pathway. PeerJ.
7(e7163)2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Tang C, Liu T, Wang K, Wang X, Xu S, He D
and Zeng J: Transcriptional regulation of FoxM1 by HIF-1α mediates
hypoxia induced EMT in prostate cancer. Oncol Rep. 42:1307–1318.
2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Wang G, Zhao D, Spring DJ and DePinho RA:
Genetics and biology of prostate cancer. Genes Dev. 32:1105–1140.
2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Sartor O and de Bono JS: Metastatic
prostate cancer. N Engl J Med. 378:645–657. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Nguyen DX, Bos PD and Massagué J:
Metastasis: From dissemination to organ-specific colonization. Nat
Rev Cancer. 9:274–284. 2009.PubMed/NCBI View
Article : Google Scholar
|
9
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Massagué J and Obenauf AC: Metastatic
colonization by circulating tumour cells. Nature. 529:298–306.
2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Arpin M, Chirivino D, Naba A and
Zwaenepoel I: Emerging role for ERM proteins in cell adhesion and
migration. Cell Adhes Migr. 5:199–206. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
McClatchey AI: ERM proteins. Curr Biol.
22:R784–R785. 2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Ponuwei GA: A glimpse of the ERM proteins.
J Biomed Sci. 23(35)2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Louvet-Vallée S: ERM proteins: From
cellular architecture to cell signaling. Biol Cell. 92:305–316.
2000.PubMed/NCBI View Article : Google Scholar
|
15
|
Clucas J and Valderrama F: ERM proteins in
cancer progression. J Cell Sci. 128(1253)2015.PubMed/NCBI View Article : Google Scholar
|
16
|
McClatchey AI: ERM proteins at a glance. J
Cell Sci. 127:3199–3204. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Kuramochi S, Moriguchi T, Kuida K, Endo J,
Semba K, Nishida E and Karasuyama H: LOK is a novel mouse
STE20-like protein kinase that is expressed predominantly in
lymphocytes. J Biol Chem. 272:22679–22684. 1997.PubMed/NCBI View Article : Google Scholar
|
18
|
Belkina NV, Liu Y, Hao JJ, Karasuyama H
and Shaw S: LOK is a major ERM kinase in resting lymphocytes and
regulates cytoskeletal rearrangement through ERM phosphorylation.
Proc Natl Acad Sci USA. 106:4707–4712. 2009.PubMed/NCBI View Article : Google Scholar
|
19
|
Endo J, Toyama-Sorimachi N, Taya C,
Kuramochi-Miyagawa S, Nagata K, Kuida K, Takashi T, Yonekawa H,
Yoshizawa Y, Miyasaka N, et al: Deficiency of a STE20/PAK family
kinase LOK leads to the acceleration of LFA-1 clustering and cell
adhesion of activated lymphocytes. FEBS Lett. 468:234–238.
2000.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang L, Lu SY, Guo R, Ma JX, Tang LY,
Shen Y, Shen CL, Lu LM, Wang ZG, Liu J, et al: Knockout of STK10
promotes the migration and invasion of cervical cancer cells.
Transl Cancer Res. 9:7079–7090. 2020.
|
21
|
Kupcho K, Shultz J, Hurst R, Hartnett J,
Zhou W, Machleidt T, Grailer J, Worzella T, Riss T, Lazar D, et al:
A real-time, bioluminescent annexin V assay for the assessment of
apoptosis. Apoptosis. 24:184–197. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Odero-Marah V, Hawsawi O, Henderson V and
Sweeney J: Epithelial-Mesenchymal Transition (EMT) and Prostate
Cancer. Adv Exp Med Biol. 1095:101–110. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Adjakly M, Ngollo M, Dagdemir A, Judes G,
Pajon A, Karsli-Ceppioglu S, Penault-Llorca F, Boiteux JP, Bignon
YJ, Guy L, et al: Prostate cancer: The main risk and protective
factors-Epigenetic modifications. Ann Endocrinol (Paris). 76:25–41.
2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Gloerich M, Ponsioen B, Vliem MJ, Zhang Z,
Zhao J, Kooistra MR, Price LS, Ritsma L, Zwartkruis FJ, Rehmann H,
et al: Spatial regulation of cyclic AMP-Epac1 signaling in cell
adhesion by ERM proteins. Mol Cell Biol. 30:5421–5431.
2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Lallemand D and Arpin M: Moesin/ezrin: A
specific role in cell metastasis? Pigment Cell Melanoma Res.
23:6–7. 2010.PubMed/NCBI View Article : Google Scholar
|
26
|
Koul HK, Pal M and Koul S: Role of p38 MAP
kinase signal transduction in solid tumors. Genes Cancer.
4:342–359. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Bradham C and McClay DR: p38 MAPK in
development and cancer. Cell Cycle. 5:824–828. 2006.PubMed/NCBI View Article : Google Scholar
|
28
|
Moriwaki K and Asahi M: Augmented TME
O-GlcNAcylation promotes tumor proliferation through the inhibition
of p38 MAPK. Mol Cancer Res. 15:1287–1298. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Krebs AM, Mitschke J, Lasierra Losada M,
Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D,
Reichardt W, Bronsert P, et al: The EMT-activator Zeb1 is a key
factor for cell plasticity and promotes metastasis in pancreatic
cancer. Nat Cell Biol. 19:518–529. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Fu M, Wang C, Li Z, Sakamaki T and Pestell
RG: Minireview: Cyclin D1: normal and abnormal functions.
Endocrinology. 145:5439–5447. 2004.PubMed/NCBI View Article : Google Scholar
|
31
|
Lee RJ, Albanese C, Stenger RJ, Watanabe
G, Inghirami G, Haines GK III, Webster M, Muller WJ, Brugge JS,
Davis RJ, et al: pp60(v-src) induction of cyclin D1 requires
collaborative interactions between the extracellular
signal-regulated kinase, p38, and Jun kinase pathways. A role for
cAMP response element-binding protein and activating transcription
factor-2 in pp60(v-src) signaling in breast cancer cells. J Biol
Chem. 274:7341–7350. 1999.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang B, Wang Z, Han L, Gong S, Wang Y, He
Z, Feng Y and Yang Z: Prognostic significance of cyclin D3
expression in malignancy patients: A meta-analysis. Cancer Cell
Int. 19(158)2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Zhang C, Wu Y, Xuan Z and Zhang S, Wang X,
Hao Y, Wu J and Zhang S: p38MAPK, Rho/ROCK and PKC pathways are
involved in influenza-induced cytoskeletal rearrangement and
hyperpermeability in PMVEC via phosphorylating ERM. Virus Res.
192:6–15. 2014.PubMed/NCBI View Article : Google Scholar
|
34
|
Koss M, Pfeiffer GR II, Wang Y, Thomas ST,
Yerukhimovich M, Gaarde WA, Doerschuk CM and Wang Q:
Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and
modulate permeability increases in human pulmonary microvascular
endothelial cells. J Immunol. 176:1218–1227. 2006.PubMed/NCBI View Article : Google Scholar
|