1
|
Ghantous Y and Abu Elnaaj I: Global
incidence and risk factors of oral cancer (In Hebrew). Harefuah.
156:645–649. 2017.PubMed/NCBI
|
2
|
Rivera C: Essentials of oral cancer. Int J
Clin Exp Pathol. 8:11884–11894. 2015.PubMed/NCBI
|
3
|
Liu D, Yang F, Xiong F and Gu N: The smart
drug delivery system and its clinical potential. Theranostics.
6:1306–1323. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Hema KN, Smitha T, Sheethal HS and
Mirnalini SA: Epigenetics in oral squamous cell carcinoma. J Oral
Maxillofac Pathol. 21:252–259. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Wong T and Wiesenfeld D: Oral cancer. Aust
Dent J. 63 (Suppl 1):S91–S99. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Bais MV: Impact of epigenetic regulation
on head and neck squamous cell carcinoma. J Dent Res. 98:268–276.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Scully C and Kirby J: Statement on mouth
cancer diagnosis and prevention. Br Dent J. 216:37–38.
2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Kalavrezos N and Scully C: Mouth cancer
for clinicians part 7: Cancer diagnosis and pre-treatment
preparation. Dent Update. 43:50–54, 57-60, 63-65. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Sahibzada HA, Khurshid Z, Khan RS, Naseem
M, Siddique KM, Mali M and Zafar MS: Salivary IL-8, IL-6 and TNF-α
as potential diagnostic biomarkers for oral cancer. Diagnostics
(Basel). 7(21)2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Cheng YS, Rees T and Wright J: A review of
research on salivary biomarkers for oral cancer detection. Clin
Transl Med. 3(3)2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Hussein AA, Forouzanfar T, Bloemena E, de
Visscher J, Brakenhoff RH, Leemans CR and Helder MN: A review of
the most promising biomarkers for early diagnosis and prognosis
prediction of tongue squamous cell carcinoma. Br J Cancer.
119:724–736. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Lee S and Margolin K: Cytokines in cancer
immunotherapy. Cancers (Basel). 3:3856–3893. 2011.PubMed/NCBI View Article : Google Scholar
|
13
|
David JM, Dominguez C, Hamilton DH and
Palena C: The IL-8/IL-8R axis: A double agent in tumor immune
resistance. Vaccines (Basel). 4(22)2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Waugh DJ and Wilson C: The interleukin-8
pathway in cancer. Clin Cancer Res. 14:6735–6341. 2008.PubMed/NCBI View Article : Google Scholar
|
15
|
De Larco JE, Wuertz BR and Furcht LT: The
potential role of neutrophils in promoting the metastatic phenotype
of tumors releasing interleukin-8. Clin Cancer Res. 10:4895–4900.
2004.PubMed/NCBI View Article : Google Scholar
|
16
|
Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F,
Ren X and Yu J: IL-8, a novel messenger to cross-link inflammation
and tumor EMT via autocrine and paracrine pathways (Review). Int J
Oncol. 48:5–12. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Kumari N, Dwarakanath BS, Das A and Bhatt
AN: Role of interleukin-6 in cancer progression and therapeutic
resistance. Tumour Biol. 37:11553–11572. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Lee H, Pal SK, Reckamp K, Figlin RA and Yu
H: STAT3: A target to enhance antitumor immune response. Curr Top
Microbiol Immunol. 344:41–59. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Visse R and Nagase H: Matrix
metalloproteinases and tissue inhibitors of metalloproteinases:
Structure, function, and biochemistry. Circ Res. 92:827–839.
2003.PubMed/NCBI View Article : Google Scholar
|
21
|
Cui N, Hu M and Khalil RA: Biochemical and
biological attributes of matrix metalloproteinases. Prog Mol Biol
Transl Sci. 147:1–73. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Arpino V, Brock M and Gill SE: The role of
TIMPs in regulation of extracellular matrix proteolysis. Matrix
Biol. 44-46:247–254. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Brew K and Nagase H: The tissue inhibitors
of metalloproteinases (TIMPs): An ancient family with structural
and functional diversity. Biochim Biophys Acta. 1803:55–71.
2010.PubMed/NCBI View Article : Google Scholar
|
24
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002.PubMed/NCBI View Article : Google Scholar
|
25
|
Singh N, Baby D, Rajguru JP, Patil PB,
Thakkannavar SS and Pujari VB: Inflammation and cancer. Ann Afr
Med. 18:121–126. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Clevers H: At the crossroads of
inflammation and cancer. Cell. 118:671–674. 2004.PubMed/NCBI View Article : Google Scholar
|
28
|
Mantovani A: Cancer: Inflammation by
remote control. Nature. 435:752–753. 2005.PubMed/NCBI View
Article : Google Scholar
|
29
|
Ha H, Debnath B and Neamati N: Role of the
CXCL8-CXCR1/2 axis in cancer and inflammatory diseases.
Theranostics. 7:1543–1588. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Todorović-Raković N and Milovanović J:
Interleukin-8 in breast cancer progression. J Interferon Cytokine
Res. 33:563–570. 2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Brandolini L, Bertini R, Bizzarri C, Sergi
R, Caselli G, Zhou D, Locati M and Sozzani S: IL-1 beta primes
IL-8-activated human neutrophils for elastase release,
phospholipase D activity, and calcium flux. J Leukoc Biol.
59:427–434. 1996.PubMed/NCBI View Article : Google Scholar
|
32
|
Tappia PS, Dent MR and Dhalla NS:
Oxidative stress and redox regulation of phospholipase D in
myocardial disease. Free Radic Biol Med. 41:349–361.
2006.PubMed/NCBI View Article : Google Scholar
|
33
|
Li A, Dubey S, Varney ML, Dave BJ and
Singh RK: IL-8 directly enhanced endothelial cell survival,
proliferation, and matrix metalloproteinases production and
regulated angiogenesis. J Immunol. 170:3369–3376. 2003.PubMed/NCBI View Article : Google Scholar
|
34
|
Khurram SA, Bingle L, McCabe BM, Farthing
PM and Whawell SA: The chemokine receptors CXCR1 and CXCR2 regulate
oral cancer cell behaviour. J Oral Pathol Med. 43:667–674.
2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Siesser PM and Hanks SK: The signaling and
biological implications of FAK overexpression in cancer. Clin
Cancer Res. 12:3233–3237. 2006.PubMed/NCBI View Article : Google Scholar
|
36
|
Kopetz S, Shah AN and Gallick GE: Src
continues aging: Current and future clinical directions. Clin
Cancer Res. 13:7232–7236. 2007.PubMed/NCBI View Article : Google Scholar
|
37
|
Bournazou E and Bromberg J: Targeting the
tumor microenvironment: JAK-STAT3 signaling. JAKSTAT.
2(e23828)2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Walter M, Liang S, Ghosh S, Hornsby PJ and
Li R: Interleukin 6 secreted from adipose stromal cells promotes
migration and invasion of breast cancer cells. Oncogene.
28:2745–2755. 2009.PubMed/NCBI View Article : Google Scholar
|
39
|
Kurosaka M and Machida S:
Interleukin-6-induced satellite cell proliferation is regulated by
induction of the JAK2/STAT3 signalling pathway through cyclin D1
targeting. Cell Prolif. 46:365–373. 2013.PubMed/NCBI View Article : Google Scholar
|
40
|
Adachi Y, Aoki C, Yoshio-Hoshino N,
Takayama K, Curiel DT and Nishimoto N: Interleukin-6 induces both
cell growth and VEGF production in malignant mesotheliomas. Int J
Cancer. 119:1303–1311. 2006.PubMed/NCBI View Article : Google Scholar
|
41
|
Rokavec M, Öner MG and Hermeking H:
Inflammation-induced epigenetic switches in cancer. Cell Mol Life
Sci. 73:23–39. 2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Chang Q, Bournazou E, Sansone P, Berishaj
M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, et al:
The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and
metastasis. Neoplasia. 15:848–862. 2013.PubMed/NCBI View Article : Google Scholar
|
43
|
O-Charoenrat P, Rhys-Evans PH and Eccles
SA: Expression of matrix metalloproteinases and their inhibitors
correlates with invasion and metastasis in squamous cell carcinoma
of the head and neck. Arch Otolaryngol Head Neck Surg. 127:813–820.
2001.PubMed/NCBI
|
44
|
Patterson ML, Atkinson SJ, Knäuper V and
Murphy G: Specific collagenolysis by gelatinase A, MMP-2, is
determined by the hemopexin domain and not the fibronectin-like
domain. FEBS Lett. 503:158–162. 2001.PubMed/NCBI View Article : Google Scholar
|
45
|
Georgescu EF, Mogoantă SŞ, Costache A,
Pârvănescu V, Totolici BD, Pătraşcu Ş and Stănescu C: The
assessment of matrix metalloproteinase-9 expression and
angiogenesis in colorectal cancer. Rom J Morphol Embryol.
56:1137–1144. 2015.PubMed/NCBI
|
46
|
Maciejczyk M, Pietrzykowska A, Zalewska A,
Knaś M and Daniszewska I: The significance of matrix
metalloproteinases in oral diseases. Adv Clin Exp Med. 25:383–390.
2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Su CW, Lin CW, Yang WE and Yang SF: TIMP-3
as a therapeutic target for cancer. Ther Adv Med Oncol.
11(1758835919864247)2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Jiang Y, Goldberg ID and Shi YE: Complex
roles of tissue inhibitors of metalloproteinases in cancer.
Oncogene. 21:2245–2252. 2002.PubMed/NCBI View Article : Google Scholar
|
49
|
Lu YC, Chang JT, Liao CT, Kang CJ, Huang
SF, Chen IH, Huang CC, Huang YC, Chen WH, Tsai CY, et al:
OncomiR-196 promotes an invasive phenotype in oral cancer through
the NME4-JNK-TIMP1-MMP signaling pathway. Mol Cancer.
13(218)2014.PubMed/NCBI View Article : Google Scholar
|
50
|
St John MA, Li Y, Zhou X, Denny P, Ho CM,
Montemagno C, Shi W, Qi F, Wu B, Sinha U, et al: Interleukin 6 and
interleukin 8 as potential biomarkers for oral cavity and
oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck
Surg. 130:929–935. 2004.PubMed/NCBI View Article : Google Scholar
|
51
|
SahebJamee M, Eslami M, AtarbashiMoghadam
F and Sarafnejad A: Salivary concentration of TNFalpha, IL1 alpha,
IL6, and IL8 in oral squamous cell carcinoma. Med Oral Patol Oral
Cir Bucal. 13:E292–E295. 2008.PubMed/NCBI
|
52
|
Punyani SR and Sathawane RS: Salivary
level of interleukin-8 in oral precancer and oral squamous cell
carcinoma. Clin Oral Investig. 17:517–524. 2013.PubMed/NCBI View Article : Google Scholar
|
53
|
Lotfi A, Shahidi N, Bayazian G,
AbdollahiFakhim S, Estakhri R, Esfahani A and Notash R: Serum level
of interleukin-6 in patients with oral tongue squamous cell
carcinoma. Iran J Otorhinolaryngol. 27:207–211. 2015.PubMed/NCBI
|
54
|
Rezaei F, Mozaffari HR, Tavasoli J,
Zavattaro E, Imani MM and Sadeghi M: Evaluation of serum and
salivary interleukin-6 and interleukin-8 levels in oral squamous
cell carcinoma patients: Systematic review and meta-analysis. J
Interferon Cytokine Res. 39:727–739. 2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Berghi NO, Dumitru M, Vrinceanu D,
Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu
C, Cornateanu RS and Giurcaneanu C: Relationship between chemokines
and T lymphocytes in the context of respiratory allergies (Review).
Exp Ther Med. 20:2352–2360. 2020.PubMed/NCBI View Article : Google Scholar
|