Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review)
- Authors:
- Qian Xie
- Rong Ma
- Hongyan Li
- Jian Wang
- Xiaoqing Guo
- Hai Chen
-
Affiliations: School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China - Published online on: June 15, 2021 https://doi.org/10.3892/etm.2021.10313
- Article Number: 881
-
Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Vos T, Allen C, Arora M, Barber RM, Bhutta Z, Brown A, Carter AR, Charlson FJ, Chen A, Coggeshall M, et al: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet. 388:1545–1602. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P, et al: Cause-specific mortality for 240 causes in China during 1990-2013: A systematic subnational analysis for the global burden of disease study 2013. Lancet. 387:251–272, 10015. 2016.PubMed/NCBI View Article : Google Scholar | |
Huang ZY, Zhang XX, Sun WL, Chen C, Li DF, Fang J, Fu MH, Liu QS, Yan TH and Li SJ: Research progress of inflammation reaction related to endoplasmic reticulum stress in ischemic endoplasmic reticulum stress. Chin Pharmacol Bull. 31:23–26. 2015.(In Chinese). | |
Dirnagl U, Iadecola C and Moskowitz MA: Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 22:391–397. 1999.PubMed/NCBI View Article : Google Scholar | |
Kovac S, Kostova Dinkova AT, Herrmann AM, Melzer N, Meuth SG and Gorji A: Metabolic and homeostatic changes in seizures and acquired epilepsy-mitochondria, calcium dynamics and reactive oxygen species. Int J Mol Sci. 18(1935)2017.PubMed/NCBI View Article : Google Scholar | |
Fahrner JA, Liu R, Perry MS, Klein J and Chan DC: A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet A. 170:2002–2011. 2016.PubMed/NCBI View Article : Google Scholar | |
Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 21:2–14. 2001.PubMed/NCBI View Article : Google Scholar | |
Chan PH: Role of oxidants in ischemic brain damage. Stroke. 27:1124–1129. 1996.PubMed/NCBI View Article : Google Scholar | |
Venkatachalam K and Montell C: TRP channels. Annu Rev Biochem. 76:387–417. 2007.PubMed/NCBI View Article : Google Scholar | |
Rakers C, Schmid M and Petzold GC: TRPV4 channels contribute to calcium transients in astrocytes and neurons during peri-infarct depolarizations in a stroke model. Glia. 65:1550–1561. 2017.PubMed/NCBI View Article : Google Scholar | |
Han J, Xu HH, Chen XL, Hu HR, Hu KM, Chen ZW and He GW: Total flavone of rhododendron improves cerebral ischemia injury by activating vascular TRPV4 to induce endothelium-derived hyperpolarizing factor-mediated responses. Evid Based Complement Alternat Med. 2018(8919867)2018.PubMed/NCBI View Article : Google Scholar | |
Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, Ohtsubo T, Matsumura K and Kitazono T: Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of Ca2+-activated K+ channels underpins impaired endothelium-dependent hyperpolarization in hypertension. Hypertension. 69:143–153. 2017.PubMed/NCBI View Article : Google Scholar | |
Li L, Qu W, Zhou L, Lu Z, Jie P and Chen L and Chen L: Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front Cell Neurosci. 7(17)2013.PubMed/NCBI View Article : Google Scholar | |
Lau A and Tymianski M: Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460:525–542. 2010.PubMed/NCBI View Article : Google Scholar | |
Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, et al: A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron. 84:764–777. 2014.PubMed/NCBI View Article : Google Scholar | |
Satheesh NJ, Uehara Y, Fedotova J, Pohanka M, Büsselberg D and Kruzliak P: TRPV currents and their role in the nociception and neuroplasticity. Neuropeptides. 57:1–8. 2016.PubMed/NCBI View Article : Google Scholar | |
Hoenderop JG, Nilius B and Bindels RJ: Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol. 64:529–549. 2002.PubMed/NCBI View Article : Google Scholar | |
Barley NF, Howard A, Callaghan DO, Legon S and Walters JRF: Epithelial calcium transporter expression in human duodenum. Am J Physiol Gastrointest Liver Physiol. 2:G285–G290. 2001.PubMed/NCBI View Article : Google Scholar | |
Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, et al: The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol. 21:316–321. 2011.PubMed/NCBI View Article : Google Scholar | |
Khairatkar-Joshi N and Szallasi A: TRPV1 antagonists: The challenges for therapeutic targeting. Trends Mol Med. 15:14–22. 2009.PubMed/NCBI View Article : Google Scholar | |
Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, Chandran P, Gomtsyan A, Brown B, Bayburt EK, et al: TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci. 26:9385–9393. 2006.PubMed/NCBI View Article : Google Scholar | |
Ward NJ, Ho KW, Lambert WS, Weitlauf C and Calkins DJ: Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. J Neurosci. 34:3161–3170. 2014.PubMed/NCBI View Article : Google Scholar | |
Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K and Qin ZH: Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 4:762–769. 2008.PubMed/NCBI View Article : Google Scholar | |
Khan MM, Ishrat T, Ahmad A, Hoda MN, Khan MB, Khuwaja G, Srivastava P, Raza SS, Islam F and Ahmad S: Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem Biol Interact. 183:255–263. 2010.PubMed/NCBI View Article : Google Scholar | |
Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 35:615–621. 2015.PubMed/NCBI View Article : Google Scholar : Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm 2015: 120198, 2015. | |
Charriaut-Marlangue C: Apoptosis: A target for neuroprotection. Therapie. 59:185–190. 2004.PubMed/NCBI View Article : Google Scholar | |
Dai Z, Xiao J, Liu S, Cui L, Hu G and Jiang D: Rutaecarpine inhibits hypoxia/reoxygenation-induced apoptosis in rat hippocampal neurons. Neuropharmacology. 55:1307–1312. 2008.PubMed/NCBI View Article : Google Scholar | |
Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E and Spatz M: Human brain endothelium: Coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res. 132:87–92. 2004.PubMed/NCBI View Article : Google Scholar | |
Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y and Zhang Y: Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol. 295:66–76. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu A, Wang SH, Hou SY, Lin CJ, Chiu WT, Hsiao SH, Chen TH and Shih CM: Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid Based Complement Alternat Med. 2013(354840)2013.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Sun L, Yu H, Zhang Y, Gong W, Jin H, Zhang L and Liang H: Binding mode pediction of evodiamine within vanilloid receptor TRPV1. Int J Mol Sci. 13:8958–8969. 2012.PubMed/NCBI View Article : Google Scholar | |
Hale AN, Ledbetter DJ, Gawriluk TR and Rucker EB III: Autophagy: Regulation and role in development. Autophagy. 7:951–972. 2013.PubMed/NCBI View Article : Google Scholar | |
Miyanohara J, Shirakawa H, Sanpei K, Nakagawa T and Kaneko S: A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice. Biochem Biophys Res Commun. 467:478–483. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, He H, Zhao Z, Cao T, Yan Z, et al: Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab. 12:130–141. 2010.PubMed/NCBI View Article : Google Scholar | |
Breyne J and Vanheel B: Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol. 47:303–309. 2006.PubMed/NCBI View Article : Google Scholar | |
Xu X, Wang P, Zhao Z, Cao T, He H, Luo Z, Zhong J, Gao F, Zhu Z, Li L, et al: Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke. 42:3245–3251. 2011.PubMed/NCBI View Article : Google Scholar | |
Ching LC, Chen CY, Su KH, Hou HH, Shyue SK, Kou YR and Lee TS: Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase. Mol Med. 18:805–815. 2012.PubMed/NCBI View Article : Google Scholar | |
Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A, Stahlberg MA, Wagener RJ, Anderson K, Drenan RM, et al: TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus. Nat Commun. 8(15878)2017.PubMed/NCBI View Article : Google Scholar | |
Zhang MJ, Yin YW, Li BH, Liu Y, Liao SQ, Gao CY, Li JC and Zhang LL: The role of TRPV1 in improving VSMC function and attenuating hypertension. Prog Biophys Mol Biol. 117:212–216. 2015.PubMed/NCBI View Article : Google Scholar | |
Szydlowska K and Tymianski M: Calcium, ischemia and excitotoxicity. Cell Calcium. 47:122–129. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen L, Liu C, Liu L and Cao X: Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neurosci Res. 64:199–207. 2009.PubMed/NCBI View Article : Google Scholar | |
Hakimizadeh E, Shamsizadeh A, Roohbakhsh A, Arababadi MK, Hajizadeh MR, Shariati M, Rahmani MR and Allahtavakoli M: Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model. Fund Clin Pharmacol. 31:420–428. 2017.PubMed/NCBI View Article : Google Scholar | |
Long M, Wang Z, Zheng D, Chen J, Tao W, Wang L, Yin N and Chen Z: Electroacupuncture pretreatment elicits neuroprotection against cerebral ischemia-reperfusion injury in rats associated with transient receptor potential vanilloid 1-mediated anti-oxidant stress and anti-inflammation. Inflammation. 42:1777–1787. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang XL, Wang X, Shao L, Jiang GT, Min JW, Mei XY, He XH, Liu WH, Huang WX and Peng BW: TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI). J Neuroinflammation. 16(114)2019.PubMed/NCBI View Article : Google Scholar | |
Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, et al: The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci. 27:3366–3374. 2007.PubMed/NCBI View Article : Google Scholar | |
Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJ, et al: Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci. 27:7459–7468. 2007.PubMed/NCBI View Article : Google Scholar | |
Gavva NR: Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci. 29:550–557. 2008.PubMed/NCBI View Article : Google Scholar | |
Li J and Zhang S: The effect of mild hypothermia on mice cerebral ischemia-reperfusion nerve cell apoptosis. Chin J Neurosurg. 26:904–907. 2010.(In Chinese). | |
Ye X, Yu S, Li C and Guo L: Neuroprotective role of mild hypothermia on cerebral ischemia-reperfusion injury in rats. Clin Med China. 22:124–126. 2006.(In Chinese). | |
Xue BS, Feng PH, Wei ND, Li ZF, Li YY, Lv XL and Hou WJ: The effect and mechanism of hypothermia on repair of cerebral ischemia-reperfusion injury rats. Prog Anat Sci. 22:654–657. 2016.(In Chinese). | |
Cao Z, Balasubramanian A, Pedersen SE, Romero J, Pautler RG and Marrelli SP: TRPV1-mediated pharmacological hypothermia promotes improved functional recovery following ischemic stroke. Sci Rep. 7(17685)2017.PubMed/NCBI View Article : Google Scholar | |
Lay C and Badjatia N: Therapeutic hypothermia after cardiac arrest. Curr Atheroscler Rep. 12:336–342. 2010.PubMed/NCBI View Article : Google Scholar | |
Ai L, Qiao Q, Chen N, Yang T, Tang X and Yue J: Neuroprotective effect of therapeutic hypothermia induced by dihydrocapsaicin on cerebral ischemia reperfusion injury in mice. J Xinxiang Med Univ. 34:1058–1062. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Muzzi M, Felici R, Cavone L, Gerace E, Minassi A, Appendino G, Moroni F and Chiarugi A: Ischemic neuroprotection by TRPV1 receptor-induced hypothermia. J Cereb Blood Flow Metab. 32:978–982. 2012.PubMed/NCBI View Article : Google Scholar | |
Cao Z, Balasubramanian A and Marrelli SP: Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am J Physiol Regul Integr Comp Physiol. 306:R149–R156. 2014.PubMed/NCBI View Article : Google Scholar | |
Shibasaki K: Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol Sci. 66:359–365. 2016.PubMed/NCBI View Article : Google Scholar | |
Shibasaki K, Ishizaki Y and Mandadi S: Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun. 441:327–332. 2013.PubMed/NCBI View Article : Google Scholar | |
Deng Q: Efficacy evaluation of Erigeron breviscapus on neurological function recovery after minimally invasive procedures for removal of intracranial hematoma. Chin J Pract Nerv Dis. 12:82–84. 2009. | |
Kojima I and Nagasawa M: TRPV2. Handb Exp Pharmacol. 222:247–272. 2014.PubMed/NCBI View Article : Google Scholar | |
Park HJ, Kwon H, Lee S, Jung JW, Ryu JH, Jang DS, Lee YC and Kim DH: Echinocystic acid facilitates neurite outgrowth in neuroblastoma Neuro2a cells and enhances spatial memory in aged mice. Biol Pharm Bull. 40:1724–1729. 2017.PubMed/NCBI View Article : Google Scholar | |
Cohen MR, Johnson WM, Pilat JM, Kiselar J, DeFrancesco-Lisowitz A, Zigmond RE and Moiseenkova-Bell VY: Nerve growth factor regulates transient receptor potential vanilloid 2 via extracellular signal-regulated kinase signaling to enhance neurite outgrowth in developing neurons. Mol Cell Biol. 35:4238–4252. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Xiao J, Hu Z, Xie M, Wang W and He D: Blocking transient receptor potential vanilloid 2 channel in astrocytes enhances astrocyte-mediated neuroprotection after oxygen-glucose deprivation and reoxygenation. Eur J Neurosci. 44:2493–2503. 2016.PubMed/NCBI View Article : Google Scholar | |
Xiao J, Yang F, Zhang H, Wang W and He D: TRPV2 activation enhances the expression of nerve growth factor in primary cultured astrocytes under oxygen-glucose deprivation/reoxygenation. Chin J Cell Biol. 36:773–779. 2014. | |
Luo H, Rossi E, Saubamea B, Chasseigneaux S, Cochois V, Choublier N, Smirnova M, Glacial F, Perrière N, Bourdoulous S, et al: Cannabidiol increases proliferation, migration, tubulogenesis, and integrity of human brain endothelial cells through TRPV2 activation. Mol Pharm. 16:1312–1326. 2019.PubMed/NCBI View Article : Google Scholar | |
Garcia-Elias A, Mrkonjic S, Jung C, Pardo-Pastor C, Vicente R and Valverde MA: The TRPV4 channel. Handb Exp Pharmacol. 222:293–319. 2014.PubMed/NCBI View Article : Google Scholar | |
Nilius B and Voets T: The puzzle of TRPV4 channelopathies. EMBO Rep. 14:152–163. 2013.PubMed/NCBI View Article : Google Scholar | |
Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM and Heller S: Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 103:525–535. 2000.PubMed/NCBI View Article : Google Scholar | |
Li L, Liu C and Chen L and Chen L: Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain. 7(27)2011.PubMed/NCBI View Article : Google Scholar | |
Chen NN, Wang JP, Jiang C, Liu C, Li X, Zhao Y and Hao Y: Research about the influence of progesterone on expression of COX-2 and the water content of injured brain in cerebral ischemia in rats. J Apoplexy Nerv Dis. 6:671–673. 2009. | |
Lu WC, Ma YJ, Xie H, Dig XH, Su QX, Xing HH, Meng YH, Fan J and Tian JH: Effect of TRPV4 channel on focal cerebral ischemic reperfusion injury in rats. Prog Anat Sci. 23:353–355. 2017.(In Chinese). | |
Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS and Bai JZ: Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res. 1077:187–199. 2006.PubMed/NCBI View Article : Google Scholar | |
Zacharia BE, Hickman ZL, Grobelny BT, DeRosa PA, Ducruet AF and Connolly ES: Complement inhibition as a proposed neuroprotective strategy following cardiac arrest. Mediators Inflamm. 2009(124384)2009.PubMed/NCBI View Article : Google Scholar | |
Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G and Smith K: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 346:557–563. 2002.PubMed/NCBI View Article : Google Scholar | |
Wu Q, Qian C, Zhao N, Dong Q, Li J, Wang BB, Chen L, Yu L, Han B, Du YM and Liao YH: Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 8(e2828)2017.PubMed/NCBI View Article : Google Scholar | |
Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, Du Y and Chen L and Chen L: Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis. 6(e1775)2015.PubMed/NCBI View Article : Google Scholar | |
Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y, Zhou R, Zhou Y, Du Y and Chen L and Chen L: Activation of transient receptor potential vanilloid 4 is involved in neuronal injury in middle cerebral artery occlusion in mice. Mol Neurobiol. 53:8–17. 2016.PubMed/NCBI View Article : Google Scholar | |
Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S and Anderova M: The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One. 7(e39959)2012.PubMed/NCBI View Article : Google Scholar | |
Dunn KM, Hill-Eubanks DC, Liedtke WB and Nelson MT: TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci USA. 110:6157–6162. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhang YF, Fan XJ, Li X, Peng LL, Wang GH, Ke KF and Jiang ZL: Ginsenoside Rg1 protects neurons from hypoxic-ischemic injury possibly by inhibiting Ca2+ influx through NMDA receptors and L-type voltage-dependent Ca2+ channels. Eur J Pharmacol. 586:90–99. 2008.PubMed/NCBI View Article : Google Scholar | |
Tanaka K, Matsumoto S, Yamada T, Yamasaki R, Suzuki M, Kido MA and Kira JI: Reduced post-ischemic brain injury in transient receptor potential vanilloid 4 knockout mice. Front Neurosci. 14(453)2020.PubMed/NCBI View Article : Google Scholar | |
Diaz-Otero JM, Yen TC, Ahmad A, Laimon-Thomson E, Abolibdeh B, Kelly K, Lewis MT, Wiseman RW, Jackson WF and Dorrance AM: Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function. Microcirculation. 26(e12535)2019.PubMed/NCBI View Article : Google Scholar | |
Simpson S, Preston D, Schwerk C, Schroten H and Blazer-Yost B: Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol. 317:C881–C893. 2019.PubMed/NCBI View Article : Google Scholar | |
Emsley HC and Tyrrell PJ: Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab. 22:1399–1419. 2002.PubMed/NCBI View Article : Google Scholar | |
Zhu D, Yin L and Liu Q: The role of TRPV4 in OGD damage of cultured in vitro astrocytes. Chin J Clin Res. 26:885–888. 2013. | |
Hong Z, Tian Y, Qi M, Li Y, Du Y and Chen L, Liu W and Chen L: Transient receptor potential vanilloid 4 inhibits γ-aminobutyric acid-activated current in hippocampal pyramidal neurons. Front Mol Neurosci. 9(77)2016.PubMed/NCBI View Article : Google Scholar | |
Ashraf MI, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, Koziel K, Enthammer M, Hermann M, Sickinger S, et al: A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 12(6)2014.PubMed/NCBI View Article : Google Scholar | |
Morente V, Pérez-Sen R, Ortega F, Huerta-Cepas J, Delicado EG and Miras-Portugal MT: Neuroprotection elicited by P2Y13 receptors against genotoxic stress by inducing DUSP2 expression and MAPK signaling recovery. Biochim Biophys Acta. 1843:1886–1898. 2014.PubMed/NCBI View Article : Google Scholar | |
Maddahi A, Chen Q and Edvinsson L: Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat. Bmc Neurosci. 10(56)2009.PubMed/NCBI View Article : Google Scholar | |
Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z and Lehotsky J: Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res. 37:1568–1577. 2012.PubMed/NCBI View Article : Google Scholar | |
Rumbaut RE, McKay MK and Huxley VH: Capillary hydraulic conductivity is decreased by nitric oxide synthase inhibition. Am J Physiol. 268:H1856–H1861. 1995.PubMed/NCBI View Article : Google Scholar | |
Piao CS, Kim JB, Han PL and Lee JK: Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res. 73:537–544. 2003.PubMed/NCBI View Article : Google Scholar | |
Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, Diao Y, Zhao Z, Luo L and Yin Z: Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol. 12:249–256. 2012.PubMed/NCBI View Article : Google Scholar | |
Ridnour LA, Windhausen AN, Isenberg JS, Yeung N, Thomas DD, Vitek MP, Roberts DD and Wink DA: Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci USA. 104:16898–16903. 2007.PubMed/NCBI View Article : Google Scholar | |
Okuno S, Saito A, Hayashi T and Chan PH: The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci. 24:7879–7887. 2004.PubMed/NCBI View Article : Google Scholar | |
Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK and Zhao H: The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem. 105:943–955. 2008.PubMed/NCBI View Article : Google Scholar | |
Sun T, Li YJ, Tian QQ, Wu Q, Feng D, Xue Z, Guo YY, Yang L, Zhang K, Zhao MG and Wu YM: Activation of liver X receptor β-enhancing neurogenesis ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Exp Neurol. 304:21–29. 2018.PubMed/NCBI View Article : Google Scholar | |
Weiss HR, Chi OZ, Kiss GK, Liu X, Damito S and Jacinto E: Akt activation improves microregional oxygen supply/consumption balance after cerebral ischemia-reperfusion. Brain Res. 1683:48–54. 2018.PubMed/NCBI View Article : Google Scholar | |
Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA and Ma XL: Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: The roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation. 105:1497–1502. 2002.PubMed/NCBI View Article : Google Scholar | |
Rocha-Ferreira E, Rudge B, Hughes MP, Rahim AA, Hristova M and Robertson NJ: Immediate remote ischemic postconditioning reduces brain nitrotyrosine formation in a piglet asphyxia model. Oxid Med Cell Longev. 2016(5763743)2016.PubMed/NCBI View Article : Google Scholar | |
Kamada H, Nito C, Endo H and Chan PH: Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 27:521–533. 2007.PubMed/NCBI View Article : Google Scholar | |
Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M and Abe K: Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res. 962:21–26. 2003.PubMed/NCBI View Article : Google Scholar | |
Berliocchi L, Bano D and Nicotera P: Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci. 360:2255–2258. 2005.PubMed/NCBI View Article : Google Scholar | |
Zhang E and Liao P: Brain transient receptor potential channels and stroke. J Neurosci Res. 93:1165–1183. 2015.PubMed/NCBI View Article : Google Scholar |