1
|
Bosetti F, Koenig JI, Ayata C, Back SA,
Becker K, Broderick JP, Carmichael ST, Cho S, Cipolla MJ, Corbett
D, et al: Translational stroke research: Vision and opportunities.
Stroke. 48:2632–2637. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Dorado L, Millan M and Davalos A:
Reperfusion therapies for acute ischemic stroke: An update. Curr
Cardiol Rev. 10:327–335. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Nishijima Y, Akamatsu Y, Weinstein PR and
Liu J: Collaterals: Implications in cerebral ischemic diseases and
therapeutic interventions. Brain Res. 1623:18–29. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Zhang J, Fang X, Zhou Y, Deng X, Lu Y, Li
J, Li S, Wang B and Xu R: The possible damaged mechanism and the
preventive effect of monosialotetrahexosylganglioside in a rat
model of cerebral ischemia-reperfusion injury. J Stroke Cerebrovasc
Dis. 24:1471–1478. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Liang G, Shi B, Luo W and Yang J: The
protective effect of caffeic acid on global cerebral
ischemia-reperfusion injury in rats. Behav Brain Funct.
11(18)2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Siroli L, Braschi G, de Jong A, Kok J,
Patrignani F and Lanciotti R: Transcriptomic approach and membrane
fatty acid analysis to study the response mechanisms of Escherichia
coli to thyme essential oil, carvacrol, 2-(E)-hexanal and citral
exposure. J Appl Microbiol. 125:1308–1320. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Di Gregoli K, Mohamad Anuar NN, Bianco R,
White SJ, Newby AC, George SJ and Johnson JL: MicroRNA-181b
controls atherosclerosis and aneurysms through regulation of TIMP-3
and elastin. Circ Res. 120:49–65. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Brew K and Nagase H: The tissue inhibitors
of metalloproteinases (TIMPs): An ancient family with structural
and functional diversity. Biochim Biophys Acta. 1803:55–71.
2010.PubMed/NCBI View Article : Google Scholar
|
9
|
Shen B, Jiang Y, Chen YR, Zheng HC, Zeng
W, Li YY, Yin A and Nie Y: Expression and inhibitory role of TIMP-3
in hepatocellular carcinoma. Oncol Rep. 36:494–502. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Kubatka P, Uramova S, Kello M, Kajo K,
Kruzliak P, Mojzis J, Vybohova D, Adamkov M, Jasek K, Lasabova Z,
et al: Antineoplastic effects of clove buds (Syzygium
aromaticum L.) in the model of breast carcinoma. J Cell Mol
Med. 21:2837–2851. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Liu H, Jing X, Dong A, Bai B and Wang H:
Overexpression of TIMP3 protects against cardiac
ischemia/reperfusion injury by inhibiting myocardial apoptosis
through ROS/Mapks pathway. Cell Physiol Biochem. 44:1011–1023.
2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Menghini R, Casagrande V, Menini S, Marino
A, Marzano V, Hribal ML, Gentileschi P, Lauro D, Schillaci O,
Pugliese G, et al: TIMP3 overexpression in macrophages protects
from insulin resistance, adipose inflammation, and nonalcoholic
fatty liver disease in mice. Diabetes. 61:454–462. 2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Fujii T, Duarte S, Lee E, Ke B, Busuttil
RW and Coito AJ: Tissue inhibitor of metalloproteinase 3 deficiency
disrupts the hepatocyte E-cadherin/β-catenin complex and induces
cell death in liver ischemia/reperfusion injury. Liver Transpl.
26:113–126. 2020.PubMed/NCBI View
Article : Google Scholar
|
14
|
Wang G, Wang T, Hu Y, Wang J, Wang Y,
Zhang Y, Li F, Liu W, Sun Y, Yu B and Kou J: NMMHC IIA triggers
neuronal autophagic cell death by promoting F-actin-dependent ATG9A
trafficking in cerebral ischemia/reperfusion. Cell Death Dis.
11(428)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhou Z, Xu N, Matei N, McBride DW, Ding Y,
Liang H, Tang J and Zhang JH: Sodium butyrate attenuated neuronal
apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats. J
Cereb Blood Flow Metab. 41:267–281. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Li Y, Guo S, Liu W, Jin T, Li X, He X,
Zhang X, Su H, Zhang N and Duan C: Silencing of SNHG12 enhanced the
effectiveness of MSCs in alleviating ischemia/reperfusion injuries
via the PI3K/AKT/mTOR signaling pathway. Front Neurosci.
13(645)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Feng H, Hu L, Zhu H, Tao L, Wu L, Zhao Q,
Gao Y, Gong Q, Mao F, Li X, et al: Repurposing antimycotic
ciclopirox olamine as a promising anti-ischemic stroke agent. Acta
Pharm Sin B. 10:434–446. 2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Gibb SL, Zhao Y, Potter D, Hylin MJ, Bruhn
R, Baimukanova G, Zhao J, Xue H, Abdel-Mohsen M, Pillai SK, et al:
TIMP3 attenuates the loss of neural stem cells, mature neurons and
neurocognitive dysfunction in traumatic brain injury. Stem Cells.
33:3530–3544. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Bu X, Zhang N, Yang X, Liu Y, Du J, Liang
J, Xu Q and Li J: Proteomic analysis of cPKCβII-interacting
proteins involved in HPC-induced neuroprotection against cerebral
ischemia of mice. J Neurochem. 117:346–356. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Leary S, Anthony R, Grandin T, Greenacre
C, Gwaltney-Brant S, Ann McCrackin M, Meyer R, Miller D, Shearer J,
Turner T and Yanong R: AVMA guidelines for the euthanasia of
animals: 2020 Edition*. AVMA, 2020.
|
21
|
Liu X, Li M, Hou M, Huang W and Song J:
MicroRNA-135a alleviates oxygen-glucose deprivation and
reoxygenation-induced injury in neurons through regulation of
GSK-3β/Nrf2 signaling. J Biochem Mol Toxicol: e22159, 2018. doi:
10.1002/jbt.22159.
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Broughton BR, Reutens DC and Sobey CG:
Apoptotic mechanisms after cerebral ischemia. Stroke. 40:e331–e339.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Li P, Shen M, Gao F, Wu J, Zhang J, Teng F
and Zhang C: An antagomir to microRNA-106b-5p ameliorates cerebral
ischemia and reperfusion injury in rats via inhibiting apoptosis
and oxidative stress. Mol Neurobiol. 54:2901–2921. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Woodruff TM, Thundyil J, Tang SC, Sobey
CG, Taylor SM and Arumugam TV: Pathophysiology, treatment, and
animal and cellular models of human ischemic stroke. Mol
Neurodegener. 6(11)2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Lewen A, Matz P and Chan PH: Free radical
pathways in CNS injury. J Neurotrauma. 17:871–890. 2000.PubMed/NCBI View Article : Google Scholar
|
27
|
Liu X, Qing Wang, Cui Y, Li X and Yang H:
In-depth transcriptomic and proteomic analyses of the hippocampus
and cortex in a rat model after cerebral ischemic injury and repair
by Shuxuetong (SXT) injection. J Ethnopharmacol.
249(112362)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Barialai L, Strecker MI, Luger AL, Jäger
M, Bruns I, Sittig ACM, Mildenberger IC, Heller SM, Delaidelli A,
Lorenz NI, et al: AMPK activation protects astrocytes from
hypoxia-induced cell death. Int J Mol Med. 45:1385–1396.
2020.PubMed/NCBI View Article : Google Scholar
|