1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Xiao L, Tien JC, Vo J, Tan M, Parolia A,
Zhang Y, Wang L, Qiao Y, Shukla S, Wang X, et al: Epigenetic
reprogramming with antisense oligonucleotides enhances the
effectiveness of androgen receptor inhibition in
castration-resistant prostate cancer. Cancer Res. 78:5731–5740.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Liao Y, Guo Z, Xia X, Liu Y, Huang C,
Jiang L, Wang X, Liu J and Huang H: Inhibition of EGFR signaling
with Spautin-1 represents a novel therapeutics for prostate cancer.
J Exp Clin Cancer Res. 38(157)2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Mungrue IN, Pagnon J, Kohannim O,
Gargalovic PS and Lusis AJ: CHAC1/MGC4504 is a novel proapoptotic
component of the unfolded protein response, downstream of the
ATF4-ATF3-CHOP cascade. J Immunol. 82:466–476. 2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Perra L, Balloy V, Foussigniere T,
Moissenet D, Petat H, Mungrue IN, Touqui L, Corvol H, Chignard M
and Guillot L: CHAC1 is differentially expressed in normal and
cystic fibrosis bronchial epithelial cells and regulates the
inflammatory response induced by pseudomonas aeruginosa. Front
Immunol. 9(2823)2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Crawford RR, Prescott ET, Sylvester CF,
Higdon AN, Shan J, Kilberg MS and Mungrue IN: Human CHAC1 protein
degrades glutathione, and mRNA induction is regulated by the
transcription factors ATF4 and ATF3 and a bipartite ATF/CRE
regulatory element. J Biol Chem. 290:15878–15891. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Kumar A, Tikoo S, Maity S, Sengupta S,
Sengupta S, Kaur A and Bachhawat AK: Mammalian proapoptotic factor
ChaC1 and its homologues function as γ-glutamyl cyclotransferases
acting specifically on glutathione. EMBO Rep. 13:1095–1101.
2012.PubMed/NCBI View Article : Google Scholar
|
8
|
Ogawa T, Wada Y, Takemura K, Board PG,
Uchida K, Kitagaki K, Tamura T, Suzuki T, Tokairin Y, Nakajima Y
and Eishi Y: CHAC1 overexpression in human gastric parietal cells
with Helicobacter pylori infection in the secretory canaliculi.
Helicobacter. 24(e12598)2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Shi ZZ, Fan ZW, Chen YX, Xie XF, Jiang W,
Wang WJ, Qiu YT and Bai J: Ferroptosis in carcinoma: Regulatory
mechanisms and new method for cancer therapy. Onco Targets Ther.
12:11291–11304. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Bebber CM, Muller F, Prieto Clemente L,
Weber J and von Karstedt S: Ferroptosis in cancer cell biology.
Cancers (Basel). 12(164)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
13
|
Yadav S, Chawla B, Khursheed MA,
Ramachandran R and Bachhawat AK: The glutathione degrading enzyme,
Chac1, is required for calcium signaling in developing zebrafish:
Redox as an upstream activator of calcium. Biochem J.
476:1857–1873. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Chadwick SR and Lajoie P: Endoplasmic
reticulum stress coping mechanisms and lifespan regulation in
health and diseases. Front Cell Dev Biol. 7(84)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Zeeshan HM, Lee GH, Kim HR and Chae HJ:
Endoplasmic reticulum stress and associated ROS. Int J Mol Sci.
17(327)2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Siwecka N, Rozpedek W, Pytel D,
Wawrzynkiewicz A, Dziki A, Dziki Ł, Diehl JA and Majsterek I: Dual
role of endoplasmic reticulum stress-mediated unfolded protein
response signaling pathway in carcinogenesis. Int J Mol Sci.
20(4354)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Scheffer D, Kulcsár G, Nagyéri G,
Kiss-Merki M, Rékási Z, Maloy M and Czömpöly T: Active mixture of
serum-circulating small molecules selectively inhibits
proliferation and triggers apoptosis in cancer cells via induction
of ER stress. Cell Signal. 65(109426)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Cao SS and Kaufman RJ: Endoplasmic
reticulum stress and oxidative stress in cell fate decision and
human disease. Antioxid Redox Signal. 21:396–413. 2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Gagliardi M, Cotella D, Santoro C, Corà D,
Barlev NA, Piacentini M and Corazzari M: Aldo-keto reductases
protect metastatic melanoma from ER stress-independent ferroptosis.
Cell Death Dis. 10(902)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Dixon SJ, Patel DN, Welsch M, Skouta R,
Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS
and Stockwell BR: Pharmacological inhibition of cystine-glutamate
exchange induces endoplasmic reticulum stress and ferroptosis.
Elife. 3(e02523)2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Lee YS, Lee DH, Choudry HA, Bartlett DL
and Lee YJ: Ferroptosis-induced endoplasmic reticulum stress:
Cross-talk between ferroptosis and apoptosis. Mol Cancer Res.
16:1073–1076. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Cao JY and Dixon SJ: Mechanisms of
ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Chen MS, Wang SF, Hsu CY, Yin PH, Yeh TS,
Lee HC and Tseng LM: CHAC1 degradation of glutathione enhances
cystine-starvation-induced necroptosis and ferroptosis in human
triple negative breast cancer cells via the GCN2-eIF2α-ATF4
pathway. Oncotarget. 8:114588–114602. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Miao L, Guo S, Lin CM, Liu Q and Huang L:
Nanoformulations for combination or cascade anticancer therapy. Adv
Drug Deliv Rev. 115:3–22. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Xiao B, Ma L and Merlin D:
Nanoparticle-mediated co-delivery of chemotherapeutic agent and
siRNA for combination cancer therapy. Expert Opin Drug Deliv.
14:65–73. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Chen CK, Law WC, Aalinkeel R, Yu Y, Nair
B, Wu J, Mahajan S, Reynolds JL, Li Y, Lai CK, et al: Biodegradable
cationic polymeric nanocapsules for overcoming multidrug resistance
and enabling drug-gene co-delivery to cancer cells. Nanoscale.
6:1567–1572. 2014.PubMed/NCBI View Article : Google Scholar
|