1
|
Luo J, Wu J, Lv K, Li K, Wu J, Wen Y, Li
X, Tang H, Jiang A, Wang Z, et al: Analysis of postsurgical
health-related quality of life and quality of voice of patients
with laryngeal carcinoma. Medicine (Baltimore).
95(e2363)2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Wu PA, Xie LL, Zhao DY, Li SS, Tang QL,
Wang SH and Yang XM: Integrin-linked kinase is overexpressed in
laryngeal squamous cell carcinoma and correlates with tumor
proliferation, migration and invasion. Eur Rev Med Pharmacol Sci.
22:8740–8748. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Huangfu H, Pan H, Wang B, Wen S, Han R and
Li L: Association between UGT1A1 polymorphism and risk of laryngeal
squamous cell carcinoma. Int J Environ Res Public Health.
13(112)2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Skóra T, Nowak-Sadzikowska J,
Mucha-Małecka A, Szyszka-Charewicz B, Jakubowicz J and Gliński B:
Postoperative irradiation in patients with pT3-4N0 laryngeal
cancer: Results and prognostic factors. Eur Arch Otorhinolaryngol.
272:673–679. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
Gourin CG, Conger BT, Sheils WC, Bilodeau
PA, Coleman TA and Porubsky ES: The effect of treatment on survival
in patients with advanced laryngeal carcinoma. Laryngoscope.
119:1312–1317. 2009.PubMed/NCBI View Article : Google Scholar
|
6
|
Li Y, Liu J, Hu W, Zhang Y, Sang J, Li H,
Ma T, Bo Y, Bai T, Guo H, et al: miR-424-5p promotes proliferation,
migration and invasion of laryngeal squamous cell carcinoma.
OncoTargets Ther. 12:10441–10453. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Tang KY, Du SL, Wang QL, Zhang YF and Song
HY: Traditional Chinese medicine targeting cancer stem cells as an
alternative treatment for hepatocellular carcinoma. J Integr Med.
18:196–202. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Kong MY, Li LY, Lou YM, Chi HY and Wu JJ:
Chinese herbal medicines for prevention and treatment of colorectal
cancer: From molecular mechanisms to potential clinical
applications. J Integr Med. 18:369–384. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Lee YT, Tan YJ and Oon CE: Molecular
targeted therapy: Treating cancer with specificity. Eur J
Pharmacol. 834:188–196. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Chen LL and Yang L: Regulation of circRNA
biogenesis. RNA Biol. 12:381–388. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Verduci L, Strano S, Yarden Y and Blandino
G: The circRNA-microRNA code: Emerging implications for cancer
diagnosis and treatment. Mol Oncol. 13:669–680. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Fan Y, Xia X, Zhu Y, Diao W, Zhu X, Gao Z
and Chen X: Circular RNA expression profile in laryngeal squamous
cell carcinoma revealed by microarray. Cell Physiol Biochem.
50:342–352. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Davis-Dusenbery BN and Hata A: MicroRNA in
cancer: the involvement of aberrant microRNA biogenesis regulatory
pathways. Genes Cancer. 1:1100–1114. 2010.PubMed/NCBI View Article : Google Scholar
|
15
|
Di Leva G, Garofalo M and Croce CM:
MicroRNAs in cancer. Annu Rev Pathol. 9:287–314. 2014.PubMed/NCBI View Article : Google Scholar
|
16
|
Yin H, Sun Y, Wang X, Park J, Zhang Y, Li
M, Yin J, Liu Q and Wei M: Progress on the relationship between
miR-125 family and tumorigenesis. Exp Cell Res. 339:252–260.
2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Liu J, Guo B, Chen Z, Wang N, Iacovino M,
Cheng J, Roden C, Pan W, Khan S, Chen S, et al: miR-125b promotes
MLL-AF9-driven murine acute myeloid leukemia involving a
VEGFA-mediated non-cell-intrinsic mechanism. Blood. 129:1491–1502.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Svoronos AA, Engelman DM and Slack FJ:
OncomiR or tumor suppressor? the duplicity of microRNAs in cancer.
Cancer Res. 76:3666–3670. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
20
|
National Research Council (US) Institute
for Laboratory Animal Research: Guide for the Care and Use of
Laboratory Animals. National Academies Press (US), Washington, DC,
1996.
|
21
|
Zhao R, Li FQ, Tian LL, Shang DS, Guo Y,
Zhang JR and Liu M: Comprehensive analysis of the whole coding and
non-coding RNA transcriptome expression profiles and construction
of the circRNA-lncRNA co-regulated ceRNA network in laryngeal
squamous cell carcinoma. Funct Integr Genomics. 19:109–121.
2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Diepenbruck M and Christofori G:
Epithelial-mesenchymal transition (EMT) and metastasis: Yes, no,
maybe? Curr Opin Cell Biol. 43:7–13. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Pastushenko I and Blanpain C: EMT
Transition States during Tumor Progression and Metastasis. Trends
Cell Biol. 29:212–226. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Liang HF, Zhang XZ, Liu BG, Jia GT and Li
WL: Circular RNA circ-ABCB10 promotes breast cancer proliferation
and progression through sponging miR-1271. Am J Cancer Res.
7:1566–1576. 2017.PubMed/NCBI
|
25
|
Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhou
SY, Zhu LP, Li J, Wang DD, Sun DW, Ji ZL, et al: Circular RNA
hsa_circ_0052112 promotes cell migration and invasion by acting as
sponge for miR-125a-5p in breast cancer. Biomed Pharmacother.
107:1342–1353. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Shen T, Cheng X, Liu X, Xia C, Zhang H,
Pan D, Zhang X and Li Y: Circ_0026344 restrains metastasis of human
colorectal cancer cells via miR-183. Artif Cells Nanomed
Biotechnol. 47:4038–4045. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Yin GH, Gao FC, Tian J and Zhang WB:
Hsa_circ_101882 promotes migration and invasion of gastric cancer
cells by regulating EMT. J Clin Lab Anal. 33(e23002)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang L, Tong X, Zhou Z, Wang S, Lei Z,
Zhang T, Liu Z, Zeng Y, Li C, Zhao J, et al: Circular RNA
hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced
epithelial-mesenchymal transition and metastasis by controlling
TIF1γ in non-small cell lung cancer. Mol Cancer.
17(140)2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Chu YL: Circ_0067934 correlates with poor
prognosis and promotes laryngeal squamous cell cancer progression
by sponging miR-1324. Eur Rev Med Pharmacol Sci. 24:4320–4327.
2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Guo Y, Huang Q, Zheng J, Hsueh CY, Yuan X,
Heng Y and Zhou L: Diagnostic role of dysregulated circular RNA
hsa_circ_0036722 in laryngeal squamous cell carcinoma. OncoTargets
Ther. 13:5709–5719. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Wei Z, Chang K and Fan C: Hsa_circ_0042666
inhibits proliferation and invasion via regulating miR-223/TGFBR3
axis in laryngeal squamous cell carcinoma. Biomed Pharmacother.
119(109365)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Lin X and Chen Y: Identification of
potentially functional CircRNA-miRNA-mRNA regulatory network in
hepatocellular carcinoma by integrated microarray analysis. Med Sci
Monit Basic Res. 24:70–78. 2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Jiang WD and Yuan PC: Molecular
network-based identification of competing endogenous RNAs in
bladder cancer. PLoS One. 14(e0220118)2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Rong D, Sun H, Li Z, Liu S, Dong C, Fu K,
Tang W and Cao H: An emerging function of circRNA-miRNAs-mRNA axis
in human diseases. Oncotarget. 8:73271–73281. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Li Y, Wang Y, Fan H, Zhang Z and Li N:
miR-125b-5p inhibits breast cancer cell proliferation, migration
and invasion by targeting KIAA1522. Biochem Biophys Res Commun.
504:277–282. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Wu M, Tan X, Liu P, Yang Y, Huang Y, Liu
X, Meng X, Yu B, Wu Y and Jin H: Role of exosomal microRNA-125b-5p
in conferring the metastatic phenotype among pancreatic cancer
cells with different potential of metastasis. Life Sci.
255(117857)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Yang D, Zhan M, Chen T, Chen W, Zhang Y,
Xu S, Yan J, Huang Q and Wang J: miR-125b-5p enhances chemotherapy
sensitivity to cisplatin by down-regulating Bcl2 in gallbladder
cancer. Sci Rep. 7(43109)2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhu M, Liu X, Li W and Wang L: Exosomes
derived from mmu_circ_0000623-modified ADSCs prevent liver fibrosis
via activating autophagy. Hum Exp Toxicol. 39:1619–1627.
2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Hui L, Zhang J and Guo X: miR-125b-5p
suppressed the glycolysis of laryngeal squamous cell carcinoma by
down-regulating hexokinase-2. Biomed Pharmacother. 103:1194–1201.
2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Polivka J Jr and Janku F: Molecular
targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol
Ther. 142:164–175. 2014.PubMed/NCBI View Article : Google Scholar
|
41
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004.PubMed/NCBI View Article : Google Scholar
|
42
|
Song M, Bode AM, Dong Z and Lee MH: AKT as
a therapeutic target for cancer. Cancer Res. 79:1019–1031.
2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Liu X, Zhang L, Liu Y, Cui J, Che S, An X,
Song Y and Cao B: Circ-8073 regulates CEP55 by sponging miR-449a to
promote caprine endometrial epithelial cells proliferation via the
PI3K/AKT/mTOR pathway. Biochim Biophys Acta Mol Cell Res.
1865:1130–1147. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Xin J, Zhang XY, Sun DK, Tian LQ and Xu P:
Up-regulated circular RNA hsa_circ_0067934 contributes to
glioblastoma progression through activating PI3K-AKT pathway. Eur
Rev Med Pharmacol Sci. 23:3447–3454. 2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Qiu X, Wang Q, Song H, Shao D and Xue J:
circ_103809 promotes breast cancer progression by regulating the
PI3K/AKT signaling pathway. Oncol Lett. 19:3725–3730.
2020.PubMed/NCBI View Article : Google Scholar
|
46
|
Liu S, Chen Q and Wang Y: miR-125b-5p
suppresses the bladder cancer progression via targeting HK2 and
suppressing PI3K/AKT pathway. Hum Cell. 33:185–194. 2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Gao W, Zhang C, Li W, Li H, Sang J, Zhao
Q, Bo Y, Luo H, Zheng X, Lu Y, et al: Promoter
methylation-regulated miR-145-5p inhibits laryngeal squamous cell
carcinoma progression by targeting FSCN1. Mol Ther. 27:365–379.
2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Lv Y, Ye D, Qiu S, Zhang J, Shen Z, Shen Y
and Deng H: miR-182 regulates cell proliferation and apoptosis in
laryngeal squamous cell carcinoma by targeting the CRR9. Biosci
Rep. 39(BSR20191348)2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Ma LJ, Wu J, Zhou E, Yin J and Xiao XP:
Molecular mechanism of targeted inhibition of HMGA2 via miRNAlet-7a
in proliferation and metastasis of laryngeal squamous cell
carcinoma. Biosci Rep. 40(BSR20193788)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Tian L, Cao J, Jiao H, Zhang J, Ren X, Liu
X, Liu M and Sun Y: CircRASSF2 promotes laryngeal squamous cell
carcinoma progression by regulating the miR-302b-3p/IGF-1R axis.
Clin Sci (Lond). 133:1053–1066. 2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Zang Y, Li J, Wan B and Tai Y: circRNA
circ-CCND1 promotes the proliferation of laryngeal squamous cell
carcinoma through elevating CCND1 expression via interacting with
HuR and miR-646. J Cell Mol Med. 24:2423–2433. 2020.PubMed/NCBI View Article : Google Scholar
|