1
|
Dabrowska S, Andrzejewska A, Lukomska B
and Janowski M: Neuroinflammation as a target for treatment of
stroke using mesenchymal stem cells and extracellular vesicles. J
Neuroinflammation. 16(178)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Mergenthaler P, Dirnagl U and Meisel A:
Pathophysiology of stroke: Lessons from animal models. Metab Brain
Dis. 19:151–167. 2004.PubMed/NCBI View Article : Google Scholar
|
3
|
Moncayo J, de Freitas GR, Bogousslavsky J,
Altieri M and van Melle G: Do transient ischemic attacks have a
neuroprotective effect? Neurology. 54:2089–2094. 2000.PubMed/NCBI View Article : Google Scholar
|
4
|
de Lau LM, den Hertog HM, van den Herik EG
and Koudstaal PJ: Predicting and preventing stroke after transient
ischemic attack. Expert Rev Neurother. 9:1159–1170. 2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Rancurel G: Transient ischemic attacks in
the elderly: New definition and diagnostic difficulties. Psychol
Neuropsychiatr Vieil. 3:17–26. 2005.PubMed/NCBI(In French).
|
6
|
Archer DP, Walker AM, McCann SK, Moser JJ
and Appireddy RM: Anesthetic neuroprotection in experimental stroke
in rodents: A systematic review and meta-analysis. Anesthesiology.
126:653–665. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang J, Haddad GG and Xia Y: delta-, but
not mu- and kappa-, opioid receptor activation protects neocortical
neurons from glutamate-induced excitotoxic injury. Brain Res.
885:143–153. 2000.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang J, Gibney GT, Zhao P and Xia Y:
Neuroprotective role of delta-opioid receptors in cortical neurons.
Am J Physiol Cell Physiol. 282:C1225–C1234. 2002.PubMed/NCBI View Article : Google Scholar
|
9
|
Endoh H, Taga K, Yamakura T, Sato K,
Watanabe I, Fukuda S and Shimoji K: Effects of naloxone and
morphine on acute hypoxic survival in mice. Crit Care Med.
27:1929–1933. 1999.PubMed/NCBI View Article : Google Scholar
|
10
|
Endoh H, Honda T, Ohashi S and Shimoji K:
Naloxone improves arterial blood pressure and hypoxic ventilatory
depression, but not survival, of rats during acute hypoxia. Crit
Care Med. 29:623–627. 2001.PubMed/NCBI View Article : Google Scholar
|
11
|
Peart JN, Gross ER and Gross GJ:
Opioid-induced preconditioning: Recent advances and future
perspectives. Vascul Pharmacol. 42:211–218. 2005.PubMed/NCBI View Article : Google Scholar
|
12
|
Mellor H and Parker PJ: The extended
protein kinase C superfamily. Biochem J. 332:281–292.
1998.PubMed/NCBI View Article : Google Scholar
|
13
|
Kaleli HN, Ozer E, Kaya VO and Kutlu O:
Protein kinase C isozymes and autophagy during neurodegenerative
disease progression. Cells. 9(553)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Bright R and Mochly-Rosen D: The role of
protein kinase C in cerebral ischemic and reperfusion injury.
Stroke. 36:2781–2790. 2005.PubMed/NCBI View Article : Google Scholar
|
15
|
Perez-Pinzon MA, Dave KR and Raval AP:
Role of reactive oxygen species and protein kinase C in ischemic
tolerance in the brain. Antioxid Redox Signal. 7:1150–1157.
2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Kurkinen K, Busto R, Goldsteins G,
Koistinaho J and Pérez-Pinzón MA: Isoform-specific membrane
translocation of protein kinase C after ischemic preconditioning.
Neurochem Res. 26:1139–1144. 2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Niu C, Li J, Cui X, Han S, Zu P, Li H and
Xu Q: Changes in cPKC isoform-specific membrane translocation and
protein expression in the brain of hypoxic preconditioned mice.
Neurosci Lett. 384:1–6. 2005.PubMed/NCBI View Article : Google Scholar
|
18
|
Sun MK, Hongpaisan J, Nelson TJ and Alkon
DL: Poststroke neuronal rescue and synaptogenesis mediated in vivo
by protein kinase C in adult brains. Proc Natl Acad Sci USA.
105:13620–13625. 2008.PubMed/NCBI View Article : Google Scholar
|
19
|
Voronkov AV and Mamleev AV: Endothelial
dysfunction and Protein kinase C activity development interrelation
at ischemic injury of a brain. Patol Fiziol Eksp Ter. 60:134–142.
2016.PubMed/NCBI
|
20
|
Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu
X and Li J: Hypoxic preconditioning induced neuroprotection against
cerebral ischemic injuries and its cPKCγ-mediated molecular
mechanism. Neurochem Int. 58:684–692. 2011.PubMed/NCBI View Article : Google Scholar
|
21
|
Wolf R, Koch T, Schulz S, Klutzny M,
Schröder H, Raulf E, Bühling F and Höllt V: Replacement of
threonine 394 by alanine facilitates internalization and
resensitization of the rat mu opioid receptor. Mol Pharmacol.
55:263–268. 1999.PubMed/NCBI View Article : Google Scholar
|
22
|
Mann A, Illing S, Miess E and Schulz S:
Different mechanisms of homologous and heterologous μ-opioid
receptor phosphorylation. Br J Pharmacol. 172:311–316.
2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Vanderschuren LJ, De Vries TJ, Wardeh G,
Hogenboom FA and Schoffelmeer AN: A single exposure to morphine
induces long-lasting behavioural and neurochemical sensitization in
rats. Eur J Neurosci. 14:1533–1538. 2001.PubMed/NCBI View Article : Google Scholar
|
24
|
Ferguson SM, Thomas MJ and Robinson TE:
Morphine-induced c-fos mRNA expression in striatofugal circuits:
Modulation by dose, environmental context, and drug history.
Neuropsychopharmacology. 29:1664–1674. 2004.PubMed/NCBI View Article : Google Scholar
|
25
|
Cunningham CL, Bakner L, Schuette LM and
Young EA: Morphine and ethanol pretreatment effects on expression
and extinction of ethanol-induced conditioned place preference and
aversion in mice. Psychopharmacology (Berl). 238:55–66.
2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Blanchard OL and Smoliga JM: Translating
dosages from animal models to human clinical trials--revisiting
body surface area scaling. FASEB J. 29:1629–1634. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Sacchetti B and Bielavska E:
Chelerythrine, a specific PKC inhibitor, blocks acquisition but not
consolidation and retrieval of conditioned taste aversion in rat.
Brain Res. 799:84–90. 1998.PubMed/NCBI View Article : Google Scholar
|
28
|
Gschwendt M, Dieterich S, Rennecke J,
Kittstein W, Mueller HJ and Johannes FJ: . Inhibition of protein
kinase C mu by various inhibitors. Differentiation from protein
kinase c isoenzymes. FEBS Lett. 392:77–80. 1996.PubMed/NCBI View Article : Google Scholar
|
29
|
Muñoz A, Nakazaki M, Goodman JC, Barrios
R, Onetti CG, Bryan J and Aguilar-Bryan L: Ischemic preconditioning
in the hippocampus of a knockout mouse lacking SUR1-based K(ATP)
channels. Stroke. 34:164–170. 2003.PubMed/NCBI View Article : Google Scholar
|
30
|
Rabinstein AA: Update on treatment of
acute ischemic stroke. Continuum (Minneap Minn). 26:268–286.
2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Rodriguez R, Santiago-Mejia J, Gomez C and
San-Juan ER: A simplified procedure for the quantitative
measurement of neurological deficits after forebrain ischemia in
mice. J Neurosci Methods. 147:22–28. 2005.PubMed/NCBI View Article : Google Scholar
|
32
|
Wexler EJ, Peters EE, Gonzales A, Gonzales
ML, Slee AM and Kerr JS: An objective procedure for ischemic area
evaluation of the stroke intraluminal thread model in the mouse and
rat. J Neurosci Methods. 113:51–58. 2002.PubMed/NCBI View Article : Google Scholar
|
33
|
Ashwal S, Tone B, Tian HR, Cole DJ and
Pearce WJ: Core and penumbral nitric oxide synthase activity during
cerebral ischemia and reperfusion. Stroke. 29:1037–1047.
1998.PubMed/NCBI View Article : Google Scholar
|
34
|
Zwerus R and Absalom A: Update on
anesthetic neuroprotection. Curr Opin Anaesthesiol. 28:424–430.
2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Thomazeau J, Rouquette A, Martinez V,
Rabuel C, Prince N, Laplanche JL, Nizard R, Bergmann JF, Perrot S
and Lloret-Linares C: Acute pain factors predictive of
post-operative pain and opioid requirement in multimodal analgesia
following knee replacement. Eur J Pain. 20:822–832. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Murry CE, Richard VJ, Reimer KA and
Jennings RB: Ischemic preconditioning slows energy metabolism and
delays ultrastructural damage during a sustained ischemic episode.
Circ Res. 66:913–931. 1990.PubMed/NCBI View Article : Google Scholar
|
37
|
Schultz JE, Rose E, Yao Z and Gross GJ:
Evidence for involvement of opioid receptors in ischemic
preconditioning in rat hearts. Am J Physiol. 268:H2157–H2161.
1995.PubMed/NCBI View Article : Google Scholar
|
38
|
Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li
YQ, Chai W and Sun XD: Hypoxic preconditioning attenuates global
cerebral ischemic injury following asphyxial cardiac arrest through
regulation of delta opioid receptor system. Neuroscience.
202:352–362. 2012.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhao P, Huang Y and Zuo Z: Opioid
preconditioning induces opioid receptor-dependent delayed
neuroprotection against ischemia in rats. J Neuropathol Exp Neurol.
65:945–952. 2006.PubMed/NCBI View Article : Google Scholar
|
40
|
Liu Y, Li J, Yang J, Ji F, Bu X, Zhang N
and Zhang B: Inhibition of PKCgamma membrane translocation mediated
morphine preconditioning-induced neuroprotection against
oxygen-glucose deprivation in the hippocampus slices of mice.
Neurosci Lett. 444:87–91. 2008.PubMed/NCBI View Article : Google Scholar
|
41
|
Arabian M, Aboutaleb N, Soleimani M,
Mehrjerdi FZ, Ajami M and Pazoki-Toroudi H: Role of morphine
preconditioning and nitric oxide following brain ischemia
reperfusion injury in mice. Iran J Basic Med Sci. 18:14–21.
2015.PubMed/NCBI
|
42
|
Peart JN and Gross GJ: Cardioprotective
effects of acute and chronic opioid treatment are mediated via
different signaling pathways. Am J Physiol Heart Circ Physiol.
291:H1746–H1753. 2006.PubMed/NCBI View Article : Google Scholar
|
43
|
Zhang N, Zhu H, Han S, Sui L and Li J:
cPKCγ alleviates ischemic injury through modulating synapsin Ia/b
phosphorylation in neurons of mice. Brain Res Bull. 142:156–162.
2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Faubel S and Edelstein CL: Caspases as
drug targets in ischemic organ injury. Curr Drug Targets Immune
Endocr Metabol Disord. 5:269–287. 2005.PubMed/NCBI View Article : Google Scholar
|
45
|
Eftekhar-Vaghefi S, Esmaeili-Mahani S,
Elyasi L and Abbasnejad M: Involvement of Mu opioid receptor
signaling in the protective effect of opioid against
6-hydroxydopamine-induced SH-SY5Y human neuroblastoma cells
apoptosis. Basic Clin Neurosci. 6:171–178. 2015.PubMed/NCBI
|
46
|
Arabian M, Aboutaleb N, Soleimani M, Ajami
M, Habibey R, Rezaei Y and Pazoki-Toroudi H: Preconditioning with
morphine protects hippocampal CA1 neurons from ischemia-reperfusion
injury via activation of the mTOR pathway. Can J Physiol Pharmacol.
96:80–87. 2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Lu S, Liao L, Zhang B, Yan W, Chen L, Yan
H, Guo L, Lu S, Xiong K and Yan J: Antioxidant cascades confer
neuroprotection in ethanol, morphine, and methamphetamine
preconditioning. Neurochem Int. 131(104540)2019.PubMed/NCBI View Article : Google Scholar
|