1
|
Maher C, Underwood M and Buchbinder R:
Non-specific low back pain. Lancet. 389:736–747. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Wang MY, Vasudevan R and Mindea SA:
Minimally invasive lateral interbody fusion for the treatment of
rostral adjacent-segment lumbar degenerative stenosis without
supplemental pedicle screw fixation. J Neurosurg Spine. 21:861–866.
2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Colombini A, Lombardi G, Corsi MM and
Banfi G: Pathophysiology of the human intervertebral disc. Int J
Biochem Cell Biol. 40:837–842. 2008.PubMed/NCBI View Article : Google Scholar
|
4
|
Ghannam M, Jumah F, Mansour S, Samara A,
Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ
and Tubbs RS: Surgical anatomy, radiological features, and
molecular biology of the lumbar intervertebral discs. Clin Anat.
30:251–266. 2017.PubMed/NCBI View
Article : Google Scholar
|
5
|
Sakai D and Grad S: Advancing the cellular
and molecular therapy for intervertebral disc disease. Adv Drug
Deliv Rev. 84:159–171. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Luoma K, Riihimaki H, Luukkonen R,
Raininko R, Viikari-Juntura E and Lamminen A: Low back pain in
relation to lumbar disc degeneration. Spine (Phila Pa 1976).
25:487–492. 2000.PubMed/NCBI View Article : Google Scholar
|
7
|
Buckwalter JA: Aging and degeneration of
the human intervertebral disc. Spine (Phila Pa 1976). 20:1307–1314.
1995.PubMed/NCBI View Article : Google Scholar
|
8
|
Nishimura K and Mochida J: Percutaneous
reinsertion of the nucleus pulposus. An experimental study. Spine
(Phila Pa 1976). 23:1531–1538; discussion 1539. 1998.PubMed/NCBI View Article : Google Scholar
|
9
|
Okuma M, Mochida J, Nishimura K, Sakabe K
and Seiki K: Reinsertion of stimulated nucleus pulposus cells
retards intervertebral disc degeneration: An in vitro and in vivo
experimental study. J Orthop Res. 18:988–997. 2000.PubMed/NCBI View Article : Google Scholar
|
10
|
Feng G, Jin X, Hu J, Ma H, Gupte MJ, Liu H
and Ma PX: Effects of hypoxias and scaffold architecture on rabbit
mesenchymal stem cell differentiation towards a nucleus
pulposus-like phenotype. Biomaterials. 32:8182–8189.
2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Yuan D, Chen Z, Xiang X, Deng S, Liu K,
Xiao D, Deng L and Feng G: The establishment and biological
assessment of a whole tissue-engineered intervertebral disc with
PBST fibers and a chitosan hydrogel in vitro and in vivo. J Biomed
Mater Res B Appl Biomater. 107:2305–2316. 2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Binch ALA, Fitzgerald JC, Growney EA and
Barry F: Cell-based strategies for IVD repair: Clinical progress
and translational obstacles. Nat Rev Rheumatol. 17:158–175.
2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Nan L, FX , Zhang L, Liu Y, Wang F
and Zhou SF: Research progresses of stem cell in the treatment of
intervertebral disc degenerative disease. Chinese Journal of Injury
Repair and Wound Healing (Electronic Edition). 13:134–138. 2018.(in
Chinese).
|
14
|
Strioga M, Viswanathan S, Darinskas A,
Slaby O and Michalek J: Same or not the same? Comparison of adipose
tissue-derived versus bone marrow-derived mesenchymal stem and
stromal cells. Stem Cells Dev. 21:2724–2752. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Han C, Jiang C, Yu C and Shen H:
Differentiation of transforming growth factor β1-induced
mesenchymal stem cells into nucleus pulposus-like cells under
simulated microgravity conditions. Cell Mol Biol (Noisy-le-grand).
61:50–55. 2015.PubMed/NCBI
|
16
|
Xu J, E XQ, Wang NX, Wang MN, Xie HX, Cao
YH, Sun LH, Tian J, Chen HJ and Yan JL: BMP7 enhances the effect of
BMSCs on extracellular matrix remodeling in a rabbit model of
intervertebral disc degeneration. FEBS J. 283:1689–1700.
2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Elabd C, Centeno CJ, Schultz JR, Lutz G,
Ichim T and Silva FJ: Intra-discal injection of autologous, hypoxic
cultured bone marrow-derived mesenchymal stem cells in five
patients with chronic lower back pain: A long-term safety and
feasibility study. J Transl Med. 14(253)2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Noriega DC, Ardura F, Hernández-Ramajo R,
Martín-Ferrero MÁ, Sánchez-Lite I, Toribio B, Alberca M, García V,
Moraleda JM, Sánchez A and García-Sancho J: Intervertebral disc
repair by allogeneic mesenchymal bone marrow cells: A randomized
controlled trial. Transplantation. 101:1945–1951. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Xu J, Qi DL, Pang XJ and Jing CW: Rabbit
nucleus pulposus cells facilitate differentiation of
adipose-derived stem cells into nucleus pulposus-like cells. Indian
J Cancer. 52 (Suppl 1):e17–e21. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Clarke LE, McConnell JC, Sherratt MJ,
Derby B, Richardson SM and Hoyland JA: Growth differentiation
factor 6 and transforming growth factor-beta differentially mediate
mesenchymal stem cell differentiation, composition, and
micromechanical properties of nucleus pulposus constructs.
Arthritis Res Ther. 16(R67)2014.PubMed/NCBI View
Article : Google Scholar
|
21
|
Roughley P, Hoemann C, DesRosiers E, Mwale
F, Antoniou J and Alini M: The potential of chitosan-based gels
containing intervertebral disc cells for nucleus pulposus
supplementation. Biomaterials. 27:388–396. 2006.PubMed/NCBI View Article : Google Scholar
|
22
|
Sakai D, Mochida J, Yamamoto Y, Nomura T,
Okuma M, Nishimura K, Nakai T, Ando K and Hotta T: Transplantation
of mesenchymal stem cells embedded in Atelocollagen gel to the
intervertebral disc: A potential therapeutic model for disc
degeneration. Biomaterials. 24:3531–3541. 2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Simona BR, Hirt L, Demkó L, Zambelli T,
Vörös J, Ehrbar M and Milleret V: Density gradients at hydrogel
interfaces for enhanced cell penetration. Biomater Sci. 3:586–591.
2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Loessner D, Stok KS, Lutolf MP, Hutmacher
DW, Clements JA and Rizzi SC: Bioengineered 3D platform to explore
cell-ECM interactions and drug resistance of epithelial ovarian
cancer cells. Biomaterials. 31:8494–8506. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Li X, Wu A, Han C, Chen C, Zhou T, Zhang
K, Yang X, Chen Z, Qin A, Tian H and Zhao J: Bone marrow-derived
mesenchymal stem cells in three-dimensional co-culture attenuate
degeneration of nucleus pulposus cells. Aging (Albany NY).
11:9167–9187. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Xie LW, Fang H, Chen AM and Li F:
Differentiation of rat adipose tissue-derived mesenchymal stem
cells towards a nucleus pulposus-like phenotype in vitro. Chin J
Traumatol. 12:98–103. 2009.PubMed/NCBI
|
27
|
Hanson K, Isder C, Shogren K, Mikula AL,
Lu L, Yaszemski MJ and Elder BD: The inhibitory effects of
vancomycin on rat bone marrow-derived mesenchymal stem cell
differentiation. J Neurosurg Spine. 1–5. 2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
28
|
Pieróg J, Tamo L, Fakin R, Kocher G,
Gugger M, Grodzki T, Geiser T, Gazdhar A and Schmid RA: Bone marrow
stem cells modified with human interleukin 10 attenuate acute
rejection in rat lung allotransplantation. Eur J Cardiothorac Surg.
53:194–200. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Kinebuchi Y, Aizawa N, Imamura T, Ishizuka
O, Igawa Y and Nishizawa O: Autologous bone-marrow-derived
mesenchymal stem cell transplantation into injured rat urethral
sphincter. Int J Urol. 17:359–368. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Riahi M, Parivar K, Baharara J and Zandi
R: Evaluation of the repair of diaphyseal fracture of femoral bone
using bone marrow mesenchymal stem cells in nicotine-bearing rat.
Bratisl Lek Listy. 120:434–442. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
32
|
Hu J, Deng G, Tian Y, Pu Y, Cao P and Yuan
W: An in vitro investigation into the role of bone marrow-derived
mesenchymal stem cells in the control of disc degeneration. Mol Med
Rep. 12:5701–5708. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Jin ES, Min J, Jeon SR, Choi KH and Jeong
JH: Analysis of molecular expression in adipose tissue-derived
mesenchymal stem cells: Prospects for use in the treatment of
intervertebral disc degeneration. J Korean Neurosurg Soc.
53:207–212. 2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Wei G HY, Qin W, Liao C and Lin Z:
Differentiation of bone marrow mesenchymal stem cells into nucleus
pulposus-like cells after co-culture with nucleus pulposus cells.
Chin J Tissue Engineering Res. 17:7834–7839. 2013.
|
35
|
Vos T, Flaxman AD, Naghavi M, Lozano R,
Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V,
et al: Years lived with disability (YLDs) for 1160 sequelae of 289
diseases and injuries 1990-2010: A systematic analysis for the
Global Burden of Disease Study 2010. Lancet. 380:2163–2196.
2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Vergroesen PP, Kingma I, Emanuel KS,
Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH and Smit TH:
Mechanics and biology in intervertebral disc degeneration: A
vicious circle. Osteoarthritis Cartilage. 23:1057–1070.
2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Chan S, Walser J, Käppeli P, Shamsollahi
M, Ferguson S and Gantenbein-Ritter B: Region specific response of
intervertebral disc cells to complex dynamic loading: An organ
culture study using a dynamic torsion-compression bioreactor. PLoS
One. 8(e72489)2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Anderson DG and Tannoury C: Molecular
pathogenic factors in symptomatic disc degeneration. Spine J. 5
(Suppl 6):260S–266S. 2005.PubMed/NCBI View Article : Google Scholar
|
39
|
van den Eerenbeemt KD, Ostelo RW, van
Royen BJ, Peul WC and van Tulder MW: Total disc replacement surgery
for symptomatic degenerative lumbar disc disease: A systematic
review of the literature. Eur Spine J. 19:1262–1280.
2010.PubMed/NCBI View Article : Google Scholar
|
40
|
Miller LE and Block JE: Safety and
effectiveness of bone allografts in anterior cervical discectomy
and fusion surgery. Spine (Phila Pa 1976). 36:2045–2050.
2011.PubMed/NCBI View Article : Google Scholar
|
41
|
Alini M, Roughley P, Antoniou J, Stoll T
and Aebi M: A biological approach to treating disc degeneration:
Not for today, but maybe for tomorrow. Eur Spine J 11 Suppl. 2
(Suppl 2):S215–S220. 2002.PubMed/NCBI View Article : Google Scholar
|
42
|
An HS, Thonar EJ and Masuda K: Biological
repair of intervertebral disc. Spine (Phila Pa 1976). 28 (Suppl
15):S86–S92. 2003.PubMed/NCBI View Article : Google Scholar
|
43
|
Hohaus C, Ganey TM, Minkus Y and Meisel
HJ: Cell transplantation in lumbar spine disc degeneration disease.
Eur Spine J 17 Suppl. 4 (Suppl 4):492–503. 2008.PubMed/NCBI View Article : Google Scholar
|
44
|
Meisel HJ, Siodla V, Ganey T, Minkus Y,
Hutton WC and Alasevic OJ: Clinical experience in cell-based
therapeutics: Disc chondrocyte transplantation A treatment for
degenerated or damaged intervertebral disc. Biomol Eng. 24:5–21.
2007.PubMed/NCBI View Article : Google Scholar
|
45
|
Chen J, Lee EJ, Jing L, Christoforou N,
Leong KW and Setton LA: Differentiation of mouse induced
pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in
vitro. PLoS One. 8(e75548)2013.PubMed/NCBI View Article : Google Scholar
|
46
|
Liu K, Chen Z, Luo XW, Song GQ, Wang P, Li
XD, Zhao M, Han XW, Bai YG, Yang ZL and Feng G: Determination of
the potential of induced pluripotent stem cells to differentiate
into mouse nucleus pulposus cells in vitro. Genet Mol Res.
14:12394–12405. 2015.PubMed/NCBI View Article : Google Scholar
|
47
|
Ni L, Liu X, Sochacki KR, Ebraheim M,
Fahrenkopf M, Shi Q, Liu J and Yang H: Effects of hypoxia on
differentiation from human placenta-derived mesenchymal stem cells
to nucleus pulposus-like cells. Spine J. 14:2451–2458.
2014.PubMed/NCBI View Article : Google Scholar
|
48
|
Cao C, Zou J, Liu X, Shapiro A, Moral M,
Luo Z, Shi Q, Liu J, Yang H and Ebraheim N: Bone marrow mesenchymal
stem cells slow intervertebral disc degeneration through the NF-κB
pathway. Spine J. 15:530–538. 2015.PubMed/NCBI View Article : Google Scholar
|
49
|
Sive JI, Baird P, Jeziorsk M, Watkins A,
Hoyland JA and Freemont AJ: Expression of chondrocyte markers by
cells of normal and degenerate intervertebral discs. Mol Pathol.
55:91–97. 2002.PubMed/NCBI View Article : Google Scholar
|
50
|
Rajpurohit R, Risbud MV, Ducheyne P,
Vresilovic EJ and Shapiro IM: Phenotypic characteristics of the
nucleus pulposus: Expression of hypoxia inducing factor-1, glucose
transporter-1 and MMP-2. Cell Tissue Res. 308:401–407.
2002.PubMed/NCBI View Article : Google Scholar
|
51
|
Richardson SM, Knowles R, Tyler J,
Mobasheri A and Hoyland JA: Expression of glucose transporters
GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate
human intervertebral disc. Histochem Cell Biol. 129:503–511.
2008.PubMed/NCBI View Article : Google Scholar
|
52
|
Cui X, Liu M, Wang J, Zhou Y and Xiang Q:
Electrospun scaffold containing TGF-β1 promotes human mesenchymal
stem cell differentiation towards a nucleus pulposus-like phenotype
under hypoxia. IET Nanobiotechnol. 9:76–84. 2015.PubMed/NCBI View Article : Google Scholar
|
53
|
Risbud MV, Albert TJ, Guttapalli A,
Vresilovic EJ, Hillibrand AS, Vaccaro AR and Shapiro IM:
Differentiation of mesenchymal stem cells towards a nucleus
pulposus-like phenotype in vitro: Implications for cell-based
transplantation therapy. Spine (Phila Pa 1976). 29:2627–2632.
2004.PubMed/NCBI View Article : Google Scholar
|
54
|
Risbud MV, Guttapalli A, Stokes DG,
Hawkins D, Danielson KG, Schaer TP, Albert TJ and Shapiro IM:
Nucleus pulposus cells express HIF-1 alpha under normoxic culture
conditions: A metabolic adaptation to the intervertebral disc
microenvironment. J Cell Biochem. 98:152–159. 2006.PubMed/NCBI View Article : Google Scholar
|
55
|
Feng G, Li L, Liu H, Song Y, Huang F, Tu
C, Shen B, Gong Q, Li T, Liu L, et al: Hypoxia differentially
regulates human nucleus pulposus and annulus fibrosus cell
extracellular matrix production in 3D scaffolds. Osteoarthritis
Cartilage. 21:582–588. 2013.PubMed/NCBI View Article : Google Scholar
|
56
|
Aaron RK, Jolly G, Ciombor DM and Barrach
HJ: A histochemical method for the demonstration of calcifying
cartilage. Calcif Tissue Int. 43:244–249. 1988.PubMed/NCBI View Article : Google Scholar
|
57
|
Rosenberg L: Chemical basis for the
histological use of safranin O in the study of articular cartilage.
J Bone Joint Surg Am. 53:69–82. 1971.PubMed/NCBI
|
58
|
Fang Z, Yang Q, Luo W, Li GH, Xiao J, Li F
and Xiong W: Differentiation of GFP-Bcl-2-engineered mesenchymal
stem cells towards a nucleus pulposus-like phenotype under hypoxia
in vitro. Biochem Biophys Res Commun. 432:444–450. 2013.PubMed/NCBI View Article : Google Scholar
|
59
|
Yoshimura H, Muneta T, Nimura A, Yokoyama
A, Koga H and Sekiya I: Comparison of rat mesenchymal stem cells
derived from bone marrow, synovium, periosteum, adipose tissue, and
muscle. Cell Tissue Res. 327:449–462. 2007.PubMed/NCBI View Article : Google Scholar
|
60
|
Anokhina EB and Buravkova LB:
Heterogeneity of stromal precursor cells isolated from rat bone
marrow. Tsitologiia. 49:40–47. 2007.PubMed/NCBI
|
61
|
Keyser KA, Beagles KE and Kiem HP:
Comparison of mesenchymal stem cells from different tissues to
suppress T-cell activation. Cell Transplant. 16:555–562.
2007.PubMed/NCBI View Article : Google Scholar
|