Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review)
- Authors:
- Xiaoyu Li
- Jiajun Lv
- Jiazhi Li
- Xiang Ren
-
Affiliations: Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China, Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China - Published online on: July 15, 2021 https://doi.org/10.3892/etm.2021.10453
- Article Number: 1021
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Mohammad HMF, Sami MM, Makary S, Toraih EA, Mohamed AO and El-Ghaiesh SH: Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression. Life Sci. 232(116588)2019.PubMed/NCBI View Article : Google Scholar | |
Hafner J, Zadrazil M, Grisold A, Ricken G, Krenn M, Kitzmantl D, Pollreisz A, Gleiss A and Schmidt-Erfurth U: Retinal and corneal Neurodegeneration and their association with systemic signs of peripheral neuropathy in type 2 diabetes. Am J Ophthalmol. 209:197–205. 2020.PubMed/NCBI View Article : Google Scholar | |
Lynch SK and Abramoff MD: Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 139:101–107. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang W and Lo ACY: Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci. 19(1816)2018.PubMed/NCBI View Article : Google Scholar | |
Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H and Naseripour M: Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 193:20–33. 2018.PubMed/NCBI View Article : Google Scholar | |
He M, Long P, Guo L, Zhang M, Wang S and He H: Fushiming capsule attenuates diabetic rat retina damage via antioxidation and anti-inflammation. Evid Based Complement Alternat Med. 2019(5376439)2019.PubMed/NCBI View Article : Google Scholar | |
Noël G, Belda M, Guadagno E, Micoud J, Klöcker N and Moukhles H: Dystroglycan and Kir4.1 coclustering in retinal Müller glia is regulated by laminin-1 and requires the PDZ-ligand domain of Kir4.1. J Neurochem. 94:691–702. 2005.PubMed/NCBI View Article : Google Scholar | |
Coughlin BA, Feenstra DJ and Mohr S: Müller cells and diabetic retinopathy. Vision Res. 139:93–100. 2017.PubMed/NCBI View Article : Google Scholar | |
Curtis TM, Hamilton R, Yong PH, McVicar CM, Berner A, Pringle R, Uchida K, Nagai R, Brockbank S and Stitt AW: Müller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia. 54:690–698. 2011.PubMed/NCBI View Article : Google Scholar | |
Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN and Reichenbach A: Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 25:397–424. 2006.PubMed/NCBI View Article : Google Scholar | |
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I and Kurachi Y: Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev. 90:291–366. 2010.PubMed/NCBI View Article : Google Scholar | |
Mendez-Gonzalez MP, Kucheryavykh YV, Zayas-Santiago A, Vélez-Carrasco W, Maldonado-Martínez G, Cubano LA, Nichols CG, Skatchkov SN and Eaton MJ: Novel KCNJ10 gene variations compromise function of inwardly rectifying potassium channel 4.1. J Biol Chem. 291:7716–7726. 2016.PubMed/NCBI View Article : Google Scholar | |
Nwaobi SE and Olsen ML: Correlating Gene-specific DNA methylation changes with expression and transcriptional activity of astrocytic KCNJ10 (Kir4.1). J Vis Exp. (52406)2015.PubMed/NCBI View Article : Google Scholar | |
Ohno Y, Kinboshi M and Shimizu S: Inwardly rectifying potassium channel Kir4.1 as a novel modulator of BDNF expression in astrocytes. Int J Mol Sci. 19(3313)2018.PubMed/NCBI View Article : Google Scholar | |
Thuringer D, Chanteloup G, Boucher J, Pernet N, Boudesco C, Jego G, Chatelier A, Bois P, Gobbo J, Cronier L, et al: Modulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells. Oncotarget. 8:37681–37693. 2017.PubMed/NCBI View Article : Google Scholar | |
Govetto A, Hubschman JP, Sarraf D, Figueroa MS, Bottoni F, dell'Omo R, Curcio CA, Seidenari P, Delledonne G, Gunzenhauser R, et al: The role of Müller cells in tractional macular disorders: An optical coherence tomography study and physical model of mechanical force transmission. Br J Ophthalmol. 104:466–472. 2020.PubMed/NCBI View Article : Google Scholar | |
Eastlake K, Luis J and Limb GA: Potential of Müller glia for retina neuroprotection. Curr Eye Res. 45:339–348. 2020.PubMed/NCBI View Article : Google Scholar | |
Li X and Liu J, Hoh J and Liu J: Müller cells in pathological retinal angiogenesis. Transl Res. 207:96–106. 2019.PubMed/NCBI View Article : Google Scholar | |
Rao SB, Katoozi S, Skauli N, Froehner SC, Ottersen OP, Adams ME and Amiry-Moghaddam M: Targeted deletion of β1-syntrophin causes a loss of Kir 4.1 from Müller cell endfeet in mouse retina. Glia. 67:1138–1149. 2019.PubMed/NCBI View Article : Google Scholar | |
Joly S, Dodd DA, Grewe BF and Pernet V: Reticulon 4A/Nogo-A influences the distribution of Kir4.1 but is not essential for potassium conductance in retinal Müller glia. Neurosci Lett. 627:168–177. 2016.PubMed/NCBI View Article : Google Scholar | |
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC and Olsen ML: The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol. 132:1–21. 2016.PubMed/NCBI View Article : Google Scholar | |
Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A and Reichenbach A: Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering. Glia. 39:292–303. 2002.PubMed/NCBI View Article : Google Scholar | |
Pannicke T, Iandiev I, Wurm A, Uckermann O, vom Hagen F, Reichenbach A, Wiedemann P, Hammes HP and Bringmann A: Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 55:633–639. 2006.PubMed/NCBI View Article : Google Scholar | |
Sibille J, Dao Duc K, Holcman D and Rouach N: The neuroglial potassium cycle during neurotransmission: Role of Kir4.1 channels. PLoS Comput Biol. 11(e1004137)2015.PubMed/NCBI View Article : Google Scholar | |
Mori F, Hikichi T, Takahashi J, Nagaoka T and Yoshida A: Dysfunction of active transport of blood-retinal barrier in patients with clinically significant macular edema in type 2 diabetes. Diabetes Care. 25:1248–1249. 2002.PubMed/NCBI View Article : Google Scholar | |
Wang Y and Qin ZH: Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 15:1382–1402. 2010.PubMed/NCBI View Article : Google Scholar | |
Li F, Eriksen J, Finer-Moore J, Chang R, Nguyen P, Bowen A, Myasnikov A, Yu Z, Bulkley D, Cheng Y, et al: Ion transport and regulation in a synaptic vesicle glutamate transporter. Science. 368:893–897. 2020.PubMed/NCBI View Article : Google Scholar | |
Pavić A, Holmes AOM, Postis VLG and Goldman A: Glutamate transporters: A broad review of the most recent archaeal and human structures. Biochem Soc Trans. 47:1197–1207. 2019.PubMed/NCBI View Article : Google Scholar | |
Ma M, Zhao S, Zhang J, Sun T, Fan Y and Zheng Z: High glucose-induced TRPC6 channel activation decreases glutamate uptake in rat retinal Müller cells. Front Pharmacol. 10(1668)2019.PubMed/NCBI View Article : Google Scholar | |
Kharade SV, Kurata H, Bender AM, Blobaum AL, Figueroa EE, Duran A, Kramer M, Days E, Vinson P, Flores D, et al: Discovery, characterization, and effects on renal fluid and electrolyte excretion of the Kir4.1 potassium channel pore blocker, VU0134992. Mol Pharmacol. 94:926–937. 2018.PubMed/NCBI View Article : Google Scholar | |
Frizzo ME: Can a selective serotonin reuptake inhibitor act as a glutamatergic modulator? Curr Ther Res Clin Exp. 87:9–12. 2017.PubMed/NCBI View Article : Google Scholar | |
Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN and Eaton MJ: Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia. 55:274–281. 2007.PubMed/NCBI View Article : Google Scholar | |
Smith AJ and Verkman AS: Superresolution imaging of Aquaporin-4 cluster size in antibody-stained paraffin brain sections. Biophys J. 109:2511–2522. 2015.PubMed/NCBI View Article : Google Scholar | |
Djukic B, Casper KB, Philpot BD, Chin LS and McCarthy KD: Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci. 27:11354–11365. 2007.PubMed/NCBI View Article : Google Scholar | |
Reichenbach A and Bringmann A: New functions of Müller cells. Glia. 61:651–678. 2013.PubMed/NCBI View Article : Google Scholar | |
Rübsam A, Parikh S and Fort PE: Role of inflammation in diabetic retinopathy. Int J Mol Sci. 19(942)2018.PubMed/NCBI View Article : Google Scholar | |
Vujosevic S, Micera A, Bini S, Berton M, Esposito G and Midena E: Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci. 56:3913–3918. 2015.PubMed/NCBI View Article : Google Scholar | |
Li XM, Wendu RL, Yao J, Ren Y, Zhao YX, Cao GF, Qin J and Yan B: Abnormal glutamate metabolism in the retina of aquaporin 4 (AQP4) knockout mice upon light damage. Neurol Sci. 35:847–853. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Xu G, Ling Q and Da C: Expression of aquaporin 4 and Kir4.1 in diabetic rat retina: Treatment with minocycline. J Int Med Res. 39:464–479. 2011.PubMed/NCBI View Article : Google Scholar | |
Setkowicz Z, Kosonowska E and Janeczko K: Inflammation in the developing rat modulates astroglial reactivity to seizures in the mature brain. J Anat. 231:366–379. 2017.PubMed/NCBI View Article : Google Scholar | |
Frigerio F, Frasca A, Weissberg I, Parrella S, Friedman A, Vezzani A and Noé FM: Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. Epilepsia. 53:1887–1897. 2012.PubMed/NCBI View Article : Google Scholar | |
Das A, Wallace GC IV, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK and Banik NL: Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience. 220:237–246. 2012.PubMed/NCBI View Article : Google Scholar | |
Wu J, Ding D, Wang X, Li Q, Sun Y, Li L and Wang Y: Regulation of aquaporin 4 expression by lipoxin A4 in astrocytes stimulated by lipopolysaccharide. Cell Immunol. 344(103959)2019.PubMed/NCBI View Article : Google Scholar | |
Li Y, Lu H, Lv X, Tang Q, Li W, Zhu H and Long Y: Blockade of aquaporin 4 inhibits irradiation-induced pulmonary inflammation and modulates macrophage polarization in mice. Inflammation. 41:2196–2205. 2018.PubMed/NCBI View Article : Google Scholar | |
Pisani F, Cammalleri M, Dal Monte M, Locri F, Mola MG, Nicchia GP, Frigeri A, Bagnoli P and Svelto M: Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: Beneficial effect of the absence of AQP4. J Cell Mol Med. 22:613–627. 2018.PubMed/NCBI View Article : Google Scholar | |
Zurolo E, de Groot M, Iyer A, Anink J, van Vliet EA, Heimans JJ, Reijneveld JC, Gorter JA and Aronica E: Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: A role for interleukin-1 β. J Neuroinflammation. 9(280)2012.PubMed/NCBI View Article : Google Scholar | |
Hassan I, Luo Q, Majumdar S, Dominguez JM II, Busik JV and Bhatwadekar AD: Tumor necrosis factor Alpha (TNF-α) disrupts Kir4.1 channel expression resulting in Müller cell dysfunction in the retina. Invest Ophthalmol Vis Sci. 58:2473–2482. 2017.PubMed/NCBI View Article : Google Scholar | |
Lin Z, Huang P, Huang S, Guo L, Xu X, Shen X, Xie B and Zhong Y: Effect of adenosine and adenosine receptor antagonists on retinal Müller cell inwardly rectifying potassium channels under exogenous glutamate stimulation. Biomed Res Int. 2018(2749257)2018.PubMed/NCBI View Article : Google Scholar | |
Saeed Dar M: Functional role for mouse cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia. Alcohol Clin Exp Res. 38:100–107. 2014.PubMed/NCBI View Article : Google Scholar | |
Skowrońska K, Obara-Michlewska M, Zielińska M and Albrecht J: NMDA receptors in astrocytes: In search for roles in neurotransmission and astrocytic homeostasis. Int J Mol Sci. 20(309)2019.PubMed/NCBI View Article : Google Scholar | |
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F and Barreto GE: NMDARs in neurological diseases: A potential therapeutic target. Int J Neurosci. 125:315–327. 2015.PubMed/NCBI View Article : Google Scholar | |
Jimenez-Blasco D, Santofimia-Castaño P, Gonzalez A, Almeida A and Bolaños JP: Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ. 22:1877–1889. 2015.PubMed/NCBI View Article : Google Scholar | |
Skowrońska K, Obara-Michlewska M, Czarnecka A, Dąbrowska K, Zielińska M and Albrecht J: Persistent overexposure to N-Methyl-D-Aspartate (NMDA) calcium-dependently downregulates glutamine synthetase, aquaporin 4, and Kir4.1 channel in mouse cortical astrocytes. Neurotox Res. 35:271–280. 2019.PubMed/NCBI View Article : Google Scholar | |
Dvorzhak A, Vagner T, Kirmse K and Grantyn R: Functional indicators of glutamate transport in single striatal astrocytes and the influence of Kir4.1 in normal and huntington mice. J Neurosci. 36:4959–4975. 2016.PubMed/NCBI View Article : Google Scholar | |
Minkel HR, Anwer TZ, Arps KM, Brenner M and Olsen ML: Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease. Glia. 63:2285–2297. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang Z, Huang P, Liu X, Huang S, Deng L, Jin Z, Xu S, Shen X, Luo X and Zhong Y: Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models. Sci Rep. 5(11294)2015.PubMed/NCBI View Article : Google Scholar | |
Wang ZF and Yang XL: Glutamate receptor-mediated retinal neuronal injury in experimental glaucoma. Sheng Li Xue Bao. 68:483–491. 2016.PubMed/NCBI(In Chinese). | |
Vogler S, Pannicke T, Hollborn M, Grosche A, Busch S, Hoffmann S, Wiedemann P, Reichenbach A, Hammes HP and Bringmann A: Müller cell reactivity in response to photoreceptor degeneration in rats with defective polycystin-2. PLoS One. 8(e61631)2014.PubMed/NCBI View Article : Google Scholar | |
Yong PH, Zong H, Medina RJ, Limb GA, Uchida K, Stitt AW and Curtis TM: Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy. Mol Vis. 16:2524–2538. 2010.PubMed/NCBI | |
Alrashdi SF, Deliyanti D, Talia DM and Wilkinson-Berka JL: Endothelin-2 injures the blood-retinal barrier and macroglial Müller cells: Interactions with angiotensin ii, aldosterone, and NADPH oxidase. Am J Pathol. 188:805–817. 2018.PubMed/NCBI View Article : Google Scholar | |
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A and Bejarano E: Glyoxalase system as a therapeutic target against diabetic retinopathy. Antioxidants (Basel). 9(1062)2020.PubMed/NCBI View Article : Google Scholar | |
Thompson K, Chen J, Luo Q, Xiao Y, Cummins TR and Bhatwadekar AD: Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Müller cells. PLoS One. 13(e0193280)2018.PubMed/NCBI View Article : Google Scholar | |
Neusch C, Rozengurt N, Jacobs RE, Lester HA and Kofuji P: Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 21:5429–5438. 2001.PubMed/NCBI View Article : Google Scholar | |
Pannicke T, Frommherz I, Biedermann B, Wagner L, Sauer K, Ulbricht E, Härtig W, Krügel U, Ueberham U, Arendt T, et al: Differential effects of P2Y1 deletion on glial activation and survival of photoreceptors and amacrine cells in the ischemic mouse retina. Cell Death Dis. 5(e1353)2014.PubMed/NCBI View Article : Google Scholar | |
Milton M and Smith PD: It's all about timing: The involvement of Kir4.1 channel regulation in acute ischemic stroke pathology. Front Cell Neurosci. 12(36)2018.PubMed/NCBI View Article : Google Scholar | |
Zaika O, Palygin O, Tomilin V, Mamenko M, Staruschenko A and Pochynyuk O: Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage. Am J Physiol Renal Physiol. 310:F311–F321. 2016.PubMed/NCBI View Article : Google Scholar | |
Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, et al: The Akt pathway in oncology therapy and beyond (Review). Int J Oncol. 53:2319–2331. 2018.PubMed/NCBI View Article : Google Scholar | |
Serin Y and Acar Tek N: Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Ann Nutr Metab. 74:322–330. 2019.PubMed/NCBI View Article : Google Scholar | |
Lemmer B and Oster H: The role of circadian rhythms in the hypertension of diabetes mellitus and the metabolic syndrome. Curr Hypertens Rep. 20(43)2018.PubMed/NCBI View Article : Google Scholar | |
Di R, Luo Q, Mathew D and Bhatwadekar AD: Diabetes alters diurnal rhythm of electroretinogram in db/db mice. Yale J Biol Med. 92:155–167. 2019.PubMed/NCBI | |
Wang Q, Tikhonenko M, Bozack SN, Lydic TA, Yan L, Panchy NL, McSorley KM, Faber MS, Yan Y, Boulton ME, et al: Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One. 9(e95028)2014.PubMed/NCBI View Article : Google Scholar | |
Luo Q, Xiao Y, Alex A, Cummins TR and Bhatwadekar AD: The diurnal rhythm of insulin receptor substrate-1 (IRS-1) and Kir4.1 in diabetes: Implications for a clock gene Bmal1. Invest Ophthalmol Vis Sci. 60:1928–1936. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, et al: Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 29:1511–1523.e5. 2019.PubMed/NCBI View Article : Google Scholar | |
Alex A, Luo Q, Mathew D, Di R and Bhatwadekar AD: Metformin corrects abnormal circadian rhythm and Kir4.1 channels in diabetes. Invest Ophthalmol Vis Sci. 61(46)2020.PubMed/NCBI View Article : Google Scholar | |
Schultze SM, Hemmings BA, Niessen M and Tschopp O: PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev Mol Med. 14(e1)2012.PubMed/NCBI View Article : Google Scholar | |
Lechner J, O'Leary OE and Stitt AW: The pathology associated with diabetic retinopathy. Vision Res. 139:7–14. 2017.PubMed/NCBI View Article : Google Scholar | |
Stefanini FR, Badaró E, Falabella P, Koss M, Farah ME and Maia M: Anti-VEGF for the management of diabetic macular edema. J Immunol Res. 2014(632307)2014.PubMed/NCBI View Article : Google Scholar | |
Lai TW, Zhang S and Wang YT: Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol. 115:157–188. 2014.PubMed/NCBI View Article : Google Scholar | |
Welters A, Klüppel C, Mrugala J, Wörmeyer L, Meissner T, Mayatepek E, Heiss C, Eberhard D and Lammert E: NMDAR antagonists for the treatment of diabetes mellitus-Current status and future directions. Diabetes Obes Metab. 19 (Suppl 1):S95–S106. 2017.PubMed/NCBI View Article : Google Scholar | |
Bai N, Aida T, Yanagisawa M, Katou S, Sakimura K, Mishina M and Tanaka K: NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina. Mol Brain. 6(34)2013.PubMed/NCBI View Article : Google Scholar | |
Fuwa M, Kageyama M, Ohashi K, Sasaoka M, Sato R, Tanaka M and Tashiro K: Nafamostat and sepimostat identified as novel neuroprotective agents via NR2B N-methyl-D-aspartate receptor antagonism using a rat retinal excitotoxicity model. Sci Rep. 9(20409)2019.PubMed/NCBI View Article : Google Scholar | |
Han N, Yu L, Song Z, Luo L and Wu Y: Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition. Mol Med Rep. 12:1098–1106. 2015.PubMed/NCBI View Article : Google Scholar | |
Ozaki H, Inoue R, Matsushima T, Sasahara M, Hayashi A and Mori H: Serine racemase deletion attenuates neurodegeneration and microvascular damage in diabetic retinopathy. PLoS One. 13(e0190864)2018.PubMed/NCBI View Article : Google Scholar | |
Chen H, Ji Y, Yan X, Su G, Chen L and Xiao J: Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharmacother. 108:1201–1207. 2018.PubMed/NCBI View Article : Google Scholar | |
Barialai L, Strecker MI, Luger AL, Jäger M, Bruns I, Sittig ACM, Mildenberger IC, Heller SM, Delaidelli A, Lorenz NI, et al: AMPK activation protects astrocytes from hypoxia-induced cell death. Int J Mol Med. 45:1385–1396. 2020.PubMed/NCBI View Article : Google Scholar | |
Ulbricht E, Pannicke T, Hollborn M, Raap M, Goczalik I, Iandiev I, Härtig W, Uhlmann S, Wiedemann P, Reichenbach A, et al: Proliferative gliosis causes mislocation and inactivation of inwardly rectifying K(+) (Kir) channels in rabbit retinal glial cells. Exp Eye Res. 86:305–313. 2008.PubMed/NCBI View Article : Google Scholar | |
Sene A, Tadayoni R, Pannicke T, Wurm A, El Mathari B, Benard R, Roux MJ, Yaffe D, Mornet D, Reichenbach A, et al: Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PLoS One. 4(e7329)2009.PubMed/NCBI View Article : Google Scholar | |
Vacca O, Charles-Messance H, El Mathari B, Sene A, Barbe P, Fouquet S, Aragón J, Darche M, Giocanti-Aurégan A, Paques M, et al: AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption. Hum Mol Genet. 25:3070–3079. 2016.PubMed/NCBI View Article : Google Scholar | |
Siqueiros-Marquez L, Bénard R, Vacca O, Charles-Messance H, Bolaños-Jimenez R, Guilloneau X, Sennlaub F, Montañez C, Sahel JA, Rendon A, et al: Protection of glial Müller cells by dexamethasone in a mouse model of surgically induced blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci. 58:876–886. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu XQ, Kobayashi H, Jin ZB, Wada A and Nao IN: Differential expression of Kir4.1 and aquaporin 4 in the retina from endotoxin-induced uveitis rat. Mol Vis. 13:309–317. 2007.PubMed/NCBI | |
Sun W, Li T, Ma H, Lin S, Xie M, Luo Y, Tian R and Tang S: The effect of K+ channel opener pinacidil on the transmembrane potassi channel protein Kir4.1 of retinal Müller cells in vitro and diabetic rats. Panminerva Med. 62:268–270. 2020.PubMed/NCBI View Article : Google Scholar | |
Jung E and Kim J: Aloin inhibits Müller cells swelling in a rat model of thioacetamide-induced hepatic retinopathy. Molecules. 23(2806)2018.PubMed/NCBI View Article : Google Scholar |