1
|
Kottgen A, Russell SD, Loehr LR,
Crainiceanu CM, Rosamond WD, Chang PP, Chambless LE and Coresh J:
Reduced kidney function as a risk factor for incident heart
failure: The atherosclerosis risk in communities (ARIC) study. J Am
Soc Nephrol. 18:1307–1315. 2007.PubMed/NCBI View Article : Google Scholar
|
2
|
Tentori F, Blayney MJ, Albert JM,
Gillespie BW, Kerr PG, Bommer J, Young EW, Akizawa T, Akiba T,
Pisoni RL, et al: Mortality risk for dialysis patients with
different levels of serum calcium, phosphorus, and PTH: The
Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney
Dis. 52:519–530. 2008.PubMed/NCBI View Article : Google Scholar
|
3
|
Bolasco P: Effects of the use of
non-calcium phosphate binders in the control and outcome of
vascular calcifications: A review of clinical trials on CKD
patients. Int J Nephrol. 2011(758450)2011.PubMed/NCBI View Article : Google Scholar
|
4
|
Adragao T: Evaluation of vascular
calcifications in CKD patients. Int J Artif Organs. 32:81–86.
2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Bai Y, Zhang J, Xu J, Cui L, Zhang H and
Zhang S: Alteration of type I collagen in the radial artery of
patients with end-stage renal disease. Am J Med Sci. 349:292–297.
2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Towler DA and Demer LL: Thematic series on
the pathobiology of vascular calcification: An introduction. Circ
Res. 108:1378–1380. 2011.PubMed/NCBI View Article : Google Scholar
|
7
|
Nitta K and Ogawa T: Vascular
calcification in end-stage renal disease patients. Contrib Nephrol.
185:156–167. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Klimczak D, Paczek L, Jazdzewski K and
Kuch M: MicroRNAs: Powerful regulators and potential diagnostic
tools in cardiovascular disease. Kardiol Pol. 73:1–6.
2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Chiang VS: Withdrawn: MicroRNAs as
potential regulators of docosahexaenoic acid benefits in
Alzheimer's disease. Nutr Neurosci: Mar 14, 2015 (Epub ahead of
print). doi: 10.1179/1476830515Y.0000000014.
|
10
|
Mennigen JA, Plagnes-Juan E,
Figueredo-Silva CA, Seiliez I, Panserat S and Skiba-Cassy S: Acute
endocrine and nutritional co-regulation of the hepatic
omy-miRNA-122b and the lipogenic gene fas in rainbow trout,
Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol.
169:16–24. 2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Pinto MT, Nicolete LD, Rodrigues ES, Palma
PV, Orellana MD, Kashima S and Covas DT: Overexpression of
hsa-miR-125b during osteoblastic differentiation does not influence
levels of Runx2, osteopontin, and ALPL gene expression. Braz J Med
Biol Res. 46:676–680. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhang W, Wu Y, Shiozaki Y, Sugimoto Y,
Takigawa T, Tanaka M, Matsukawa A and Ozaki T: MiRNA-133a-5p
inhibits the expression of osteoblast differentiation-associated
markers by targeting the 3 UTR of RUNX2. DNA Cell Biol. 37:199–209.
2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Narayanan A, Srinaath N, Rohini M and
Selvamurugan N: Regulation of Runx2 by MicroRNAs in osteoblast
differentiation. Life Sci. 232(116676)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Xu J, Bai Y, Jin J, Zhang J, Zhang S, Cui
L and Zhang H: Magnesium modulates the expression levels of
calcification-associated factors to inhibit calcification in a
time-dependent manner. Exp Ther Med. 9:1028–1034. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Griffiths-Jones S, Grocock RJ, van Dongen
S, Bateman A and Enright AJ: MiRBase: MicroRNA sequences, targets
and gene nomenclature. Nucleic Acids Res. 34:D140–D144.
2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Wang Z, Jiang Y, Liu N, Ren L, Zhu Y, An Y
and Chen D: Advanced glycation end-product Nε-carboxymethyl-Lysine
accelerates progression of atherosclerotic calcification in
diabetes. Atherosclerosis. 221:387–396. 2012.PubMed/NCBI View Article : Google Scholar
|
17
|
Du Y, Wang Y, Wang L, Liu B, Tian Q, Liu
CJ, Zhang T, Xu Q, Zhu Y, Ake O, et al: Cartilage oligomeric matrix
protein inhibits vascular smooth muscle calcification by
interacting with bone morphogenetic protein-2. Circ Res.
108:917–928. 2011.PubMed/NCBI View Article : Google Scholar
|
18
|
Shanahan CM, Crouthamel MH, Kapustin A and
Giachelli CM: Arterial calcification in chronic kidney disease: Key
roles for calcium and phosphate. Circ Res. 109:697–711.
2011.PubMed/NCBI View Article : Google Scholar
|
19
|
Tang Q, Tong M, Zheng G, Shen L, Shang P
and Liu H: Masquelet's induced membrane promotes the osteogenic
differentiation of bone marrow mesenchymal stem cells by activating
the Smad and MAPK pathways. Am J Transl Res. 10:1211–1219.
2018.PubMed/NCBI
|
20
|
Luo Y, Cao X, Chen J, Gu J, Zhao J and Sun
J: MicroRNA-224 suppresses osteoblast differentiation by inhibiting
SMAD4. J Cell Physiol. 233:6929–6937. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Liu J, Xiao X, Shen Y, Chen L, Xu C, Zhao
H, Wu Y, Zhang Q, Zhong J, Tang Z, et al: MicroRNA-32 promotes
calcification in vascular smooth muscle cells: Implications as a
novel marker for coronary artery calcification. PLoS One.
12(e0174138)2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Wang Y, Chen S, Deng C, Li F, Wang Y, Hu
X, Shi F and Dong N: MicroRNA-204 Targets Runx2 to Attenuate
BMP-2-induced osteoblast differentiation of human aortic valve
interstitial cells. J Cardiovasc Pharmacol. 66:63–71.
2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Roberto VP, Tiago DM, Silva IA and Cancela
ML: MiR-29a is an enhancer of mineral deposition in bone-derived
systems. Arch Biochem Biophys. 564:173–183. 2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Wen P, Cao H, Fang L, Ye H, Zhou Y, Jiang
L, Su W, Xu H, He W, Dai C and Yang J: MiR-125b/Ets1 axis regulates
transdifferentiation and calcification of vascular smooth muscle
cells in a high-phosphate environment. Exp Cell Res. 322:302–312.
2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Goettsch C, Rauner M, Pacyna N, Hempel U,
Bornstein SR and Hofbauer LC: MiR-125b regulates calcification of
vascular smooth muscle cells. Am J Pathol. 179:1594–1600.
2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Balderman JA, Lee HY, Mahoney CE, Handy
DE, White K, Annis S, Lebeche D, Hajjar RJ, Loscalzo J and Leopold
JA: Bone morphogenetic protein-2 decreases microRNA-30b and
microRNA-30c to promote vascular smooth muscle cell calcification.
J Am Heart Assoc. 1(e003905)2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Sun Z, Cao X, Hu Z, Zhang L, Wang H, Zhou
H, Li D, Zhang S and Xie M: MiR-103 inhibits osteoblast
proliferation mainly through suppressing Cav1.2 expression in
simulated microgravity. Bone. 76:121–128. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Li E, Zhang J, Yuan T and Ma B: MiR-143
suppresses osteogenic differentiation by targeting Osterix. Mol
Cell Biochem. 390:69–74. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Panizo S, Naves-Diaz M, Carrillo-Lopez N,
Martinez-Arias L, Fernandez-Martin JL, Ruiz-Torres MP,
Cannata-Andia JB and Rodriguez I: MicroRNAs 29b, 133b, and 211
regulate vascular smooth muscle calcification mediated by high
phosphorus. J Am Soc Nephrol. 27:824–834. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Atlasi Y, Noori R, Gaspar C, Franken P,
Sacchetti A, Rafati H, Mahmoudi T, Decraene C, Calin GA, Merrill BJ
and Fodde R: Wnt signaling regulates the lineage differentiation
potential of mouse embryonic stem cells through Tcf3
down-regulation. PLoS Genet. 9(e1003424)2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G,
Li Z, Peng J, Wang P, Shen C, et al: MicroRNA-103a functions as a
mechanosensitive microRNA to inhibit bone formation through
targeting Runx2. J Bone Miner Res. 30:330–345. 2015.PubMed/NCBI View Article : Google Scholar
|