1
|
Brangsch J, Reimann C, Collettini F,
Buchert R, Botnar RM and Makowski MR: Molecular imaging of
abdominal aortic aneurysms. Trends Mol Med. 23:150–164.
2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Aggarwal S, Qamar A, Sharma V and Sharma
A: Abdominal aortic aneurysm: A comprehensive review. Exp Clin
Cardiol. 16:11–15. 2011.PubMed/NCBI
|
3
|
Laine MT, Laukontaus SJ, Sund R, Aho PS,
Kantonen I, Albäck A and Venermo M: A population-based study of
abdominal aortic aneurysm treatment in finland 2000 to 2014.
Circulation. 136:1726–1734. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Keisler B and Carter C: Abdominal aortic
aneurysm. Am Fam Physician. 91:538–543. 2015.PubMed/NCBI
|
5
|
Riches K, Angelini TG, Mudhar GS, Kaye J,
Clark E, Bailey MA, Sohrabi S, Korossis S, Walker PG, Scott DJ and
Porter KE: Exploring smooth muscle phenotype and function in a
bioreactor model of abdominal aortic aneurysm. J Transl Med.
11(208)2013.PubMed/NCBI View Article : Google Scholar
|
6
|
Peshkova IO, Schaefer G and Koltsova EK:
Atherosclerosis and aortic aneurysm-is inflammation a common
denominator? FEBS J. 283:1636–1652. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Stegbauer J, Thatcher SE, Yang G,
Bottermann K, Rump LC, Daugherty A and Cassis LA: Mas receptor
deficiency augments angiotensin II-induced atherosclerosis and
aortic aneurysm ruptures in hypercholesterolemic male mice. J Vasc
Surg. 70:1658–1668.e1. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Cao C, Zhu Y, Chen W, Li L, Qi Y, Wang X,
Zhao Y, Wan X and Chen X: IIKKε knockout prevents high fat diet
induced arterial atherosclerosis and NF-κB signaling in mice. PLoS
One. 8(e64930)2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhang J, Tian M, Xia Z and Feng P: Roles
of IκB kinase ε in the innate immune defense and beyond. Virol Sin.
31:457–465. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang L, Wang L, Chen W, Xu Y, Wang L,
Iskandar R, Wang Y and Chen X: The expression of inhibitor of
nuclear factor kappa-B kinase epsilon (IKKe) in human aortic
aneurysm. Folia Morphol (Warsz). 76:372–378. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Chai H, Tao Z, Qi Y, Qi H, Chen W, Xu Y,
Zhang L, Chen H and Chen X: IKK epsilon deficiency attenuates
angiotensin II-induced abdominal aortic aneurysm formation in mice
by inhibiting inflammation, oxidative stress, and apoptosis. Oxid
Med Cell Longev. 2020(3602824)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
D'Arcy MS: Cell death: A review of the
major forms of apoptosis, necrosis and autophagy. Cell Biol Int.
43:582–592. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Simon HU: Autophagy in myocardial
differentiation and cardiac development. Circ Res. 110:524–525.
2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Song S, Tan J, Miao Y, Li M and Zhang Q:
Crosstalk of autophagy and apoptosis: Involvement of the dual role
of autophagy under ER stress. J Cell Physiol. 232:2977–2984.
2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Huang J, Wang T, Wright AC, Yang J, Zhou
S, Li L, Yang J, Small A and Parmacek MS: Myocardin is required for
maintenance of vascular and visceral smooth muscle homeostasis
during postnatal development. Proc Natl Acad Sci USA.
112:4447–4452. 2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Yu L, Alva A, Su H, Dutt P, Freundt E,
Welsh S, Baehrecke EH and Lenardo MJ: Regulation of an ATG7-beclin
1 program of autophagic cell death by caspase-8. Science.
304:1500–1502. 2004.PubMed/NCBI View Article : Google Scholar
|
17
|
Leonardi M, Perna E, Tronnolone S,
Colecchia D and Chiariello M: Activated kinase screening identifies
the IKBKE oncogene as a positive regulator of autophagy. Autophagy.
15:312–326. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Ramadan A, Al-Omran M and Verma S: The
putative role of autophagy in the pathogenesis of abdominal aortic
aneurysms. Atherosclerosis. 257:288–296. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Petit PX, Lecoeur H, Zorn E, Dauguet C,
Mignotte B and Gougeon ML: Alterations in mitochondrial structure
and function are early events of dexamethasone-induced thymocyte
apoptosis. J Cell Biol. 130:157–167. 1995.PubMed/NCBI View Article : Google Scholar
|
20
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222.
2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Daye D and Walker TG: Complications of
endovascular aneurysm repair of the thoracic and abdominal aorta:
Evaluation and management. Cardiovasc Diagn Ther. 8 (Suppl
1):S138–S156. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Gottlieb RA: Mitochondrial signaling in
apoptosis: Mitochondrial daggers to the breaking heart. Basic Res
Cardiol. 98:242–249. 2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Lopez de Figueroa P, Lotz MK, Blanco FJ
and Carames B: Autophagy activation and protection from
mitochondrial dysfunction in human chondrocytes. Arthritis
Rheumatol. 67:966–976. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Kosacka J, Nowicki M, Paeschke S, Baum P,
Bluher M and Kloting N: Up-regulated autophagy: As a protective
factor in adipose tissue of WOKW rats with metabolic syndrome.
Diabetol Metab Syndr. 10(13)2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Xing H, Peng M, Li Z, Chen J, Zhang H and
Teng X: Ammonia inhalation-mediated mir-202-5p leads to cardiac
autophagy through PTEN/AKT/mTOR pathway. Chemosphere. 235:858–866.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Yang W, Duan Q, Zhu X, Tao K and Dong A:
Follistatin-Like 1 attenuates ischemia/reperfusion injury in
cardiomyocytes via regulation of autophagy. Biomed Res Int.
2019(9537382)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhang YY, Shi YN, Zhu N, Wang W, Deng CF,
Xie XJ, Liao DF and Qin L: Autophagy: A killer or guardian of
vascular smooth muscle cells. J Drug Target. 28:449–455.
2020.PubMed/NCBI View Article : Google Scholar
|
28
|
Wang Z, Guo J, Han X, Xue M, Wang W, Mi L,
Sheng Y, Ma C, Wu J and Wu X: Metformin represses the
pathophysiology of AAA by suppressing the activation of
PI3K/AKT/mTOR/autophagy pathway in ApoE-/-
mice. Cell Biosci. 9(68)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Criollo A, Senovilla L, Authier H, Maiuri
MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S,
et al: The IKK complex contributes to the induction of autophagy.
EMBO J. 29:619–631. 2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Cao C, Zhu Y, Chen W, Li L, Qi Y, Wang X,
Zhao Y, Wan X and Chen X: IKKε knockout prevents high fat diet
induced arterial atherosclerosis and NF-κB signaling in Mice. PLoS
One. 8(e64930)2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Wu L, Duan Q, Gao D, Wang Y, Xue S, Li W
and Lei M: Zearalenone blocks autophagy flow and induces cell
apoptosis during embryo implantation in gilts. Toxicol Sci.
175:126–139. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Cheng Z, Zhang M, Hu J, Lin J, Feng X,
Wang S, Wang T, Gao E, Wang H and Sun D: Mst1 knockout enhances
cardiomyocyte autophagic flux to alleviate angiotensin II-induced
cardiac injury independent of angiotensin II receptors. J Mol Cell
Cardiol. 125:117–128. 2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Liu J, Liu W and Yang H: Balancing
apoptosis and autophagy for Parkinson's disease therapy: Targeting
BCL-2. ACS Chem Neurosci. 10:792–802. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Chung Y, Lee J, Jung S, Lee Y, Cho JW and
Oh YJ: Dysregulated autophagy contributes to caspase-dependent
neuronal apoptosis. Cell Death Dis. 9(1189)2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Lu Y, Li S, Wu H, Bian Z, Xu J, Gu C, Chen
X and Yang D: Beneficial effects of astragaloside IV against
angiotensin II-induced mitochondrial dysfunction in rat vascular
smooth muscle cells. Int J Mol Med. 36:1223–1232. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Wang R, Yang Q, Wang X, Wang W, Li J, Zhu
J, Liu X, Liu J and Du J: FoxO3α-mediated autophagy contributes to
apoptosis in cardiac microvascular endothelial cells under hypoxia.
Microvasc Res. 104:23–31. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Liu YL, Lai F, Wilmott JS, Yan XG, Liu XY,
Luan Q, Guo ST, Jiang CC, Tseng HY, Scolyer RA, et al: Noxa
upregulation by oncogenic activation of MEK/ERK through CREB
promotes autophagy in human melanoma cells. Oncotarget.
5:11237–11251. 2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Goktuna SI, Shostak K, Chau TL, Heukamp
LC, Hennuy B, Duong HQ, Ladang A, Close P, Klevernic I, Olivier F,
et al: The prosurvival IKK-related kinase IKKε integrates LPS and
IL17A signaling cascades to promote wnt-dependent tumor development
in the intestine. Cancer Res. 76:2587–2599. 2016.PubMed/NCBI View Article : Google Scholar
|
39
|
Zucchini-Pascal N, de Sousa G and Rahmani
R: Lindane and cell death: At the crossroads between apoptosis,
necrosis and autophagy. Toxicology. 256:32–41. 2009.PubMed/NCBI View Article : Google Scholar
|
40
|
Wang X, Martindale JL and Holbrook NJ:
Requirement for ERK activation in cisplatin-induced apoptosis. J
Biol Chem. 275:39435–39443. 2000.PubMed/NCBI View Article : Google Scholar
|
41
|
Cagnol S, Van Obberghen-Schilling EB and
Chambard JC: Prolonged activation of ERK1,2 induces
FADD-independent caspase 8 activation and cell death. Apoptosis.
11:337–346. 2006.PubMed/NCBI View Article : Google Scholar
|