1
|
Jenny L, Melmer A, Laimer M, Hardy ET, Lam
WA and Schroeder V: Diabetes affects endotelial cell function and
alters fibrin clot formation in a microvascular flow model: A pilot
study. Diab Vasc Dis Res: Feb 10, 2020 (Epub ahead of print).
|
2
|
Iwai T, Miyazaki M, Yamada G, Nakayama M,
Yamamoto T, Satoh M, Sato H and Ito S: Diabetes mellitus as a cause
or comorbidity of chronic kidney disease and its outcomes: The
Gonryo study. Clin Exp Nephrol. 22:328–336. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Kanwar YS, Sun L, Xie P, Liu FY and Chen
S: A glimpse of various pathogenetic mechanisms of diabetic
nephropathy. Annu Rev Pathol. 6:395–423. 2011.PubMed/NCBI View Article : Google Scholar
|
4
|
Kashihara N, Haruna Y, Kondeti VK and
Kanwar YS: Oxidative stress in diabetic nephropathy. Curr Med Chem.
17:4256–4269. 2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Mora C and Navarro J: Inflammation and
pathogenesis of diabetic nephropathy. Metabolism. 53:265–266.
2004.PubMed/NCBI View Article : Google Scholar
|
6
|
Wada J and Makino H: Inflammation and the
pathogenesis of diabetic nephropathy. Clin Sci. 124:139–152.
2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang B, Ramesh G, Norbury CC and Reeves
WB: Cisplatin-induced nephrotoxicity is mediated by tumor necrosis
factor-alpha produced by renal parenchymal cells. Kidney Int.
72:37–44. 2007.PubMed/NCBI View Article : Google Scholar
|
8
|
Kalantarinia K, Awad AS and Siragy HM:
Urinary and renal interstitial concentrations of TNF-α increase
prior to rise in albuminuria in diabetic rats. Kidney Int.
64:1208–1213. 2003.PubMed/NCBI View Article : Google Scholar
|
9
|
Navarro J, Milena FJ, Mora C, León C,
Claverie F, Flores C and García J: Tumor necrosis factor-alpha gene
expression in diabetic nephropathy: Relationship with urinary
albumin excretion and effect of angiotensin-converting enzyme
inhibition. Kidney Int Suppl. 68:S98–S102. 2005.PubMed/NCBI View Article : Google Scholar
|
10
|
Kong S, Zhang C, Li W, Wang L, Luan H,
Wang WH and Gu R: Stimulation of Ca2+-sensing receptor
inhibits the basolateral 50-pS K channels in the thick ascending
limb of rat kidney. Biochim Biophys Acta. 1823:273–281.
2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Hebert SC: Roles of Na-K-2Cl and Na-Cl
cotransporters and ROMK potassium channels in urinary concentrating
mechanism. Am J Physiol. 275:F325–F327. 1998.PubMed/NCBI View Article : Google Scholar
|
12
|
Wang M, Sui H, Li W, Wang J, Liu Y, Gu L,
Wang WH and Gu R: Stimulation of A(2a) adenosine
receptor abolishes the inhibitory effect of arachidonic acid on the
basolateral 50-pS K channel in the thick ascending limb. Am J
Physiol Renal Physiol. 300:F906–F913. 2011.PubMed/NCBI View Article : Google Scholar
|
13
|
Hebert SC, Desir G, Giebisch G and Wang W:
Molecular diversity and regulation of renal potassium channels.
Physiol Rev. 85:319–371. 2005.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhang C, Wang L, Su X, Lin DH and Wang WH:
KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the
cortical thick ascending limb. Am J Physiol Renal Physiol.
308:F1288–F1296. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Fan L, Wang X, Zhang D, Duan X, Zhao C, Zu
M, Meng X, Zhang C, Su XT, Wang MX, et al: Vasopressin-induced
stimulation of the Na(+)-activated K(+) channels is responsible for
maintaining the basolateral K(+) conductance of the thick ascending
limb (TAL) in EAST/SeSAME syndrome. Biochim Biophys Acta.
1852:2554–2562. 2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Dipetrillo K, Coutermarsh B and Gesek FA:
Urinary tumor necrosis factor contributes to sodium retention and
renal hypertrophy during diabetes. Am J Physiol Renal Physiol.
284:F113–F121. 2003.PubMed/NCBI View Article : Google Scholar
|
17
|
Ling BN, Webster CL and Eaton DC:
Eicosanoids modulate apical Ca(2+)-dependent K+ channels
in cultured rabbit principal cells. Am J Physiol. 263:F116–F126.
1992.PubMed/NCBI View Article : Google Scholar
|
18
|
Mouchlis VD and Dennis EA: Phospholipase
A2 catalysis and lipid mediator lipidomics. Biochim
Biophys Acta Mol Cell Biol Lipids. 1864:766–771. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang G, Gui S, Wang W, Meng D, Meng Q,
Luan H, Zhao R, Zhang J and Sui H: Acute stimulatory effect of
tumor necrosis factor on the basolateral 50 pS K channels in the
thick ascending limb of the rat kidney. Mol Med Rep. 18:4733–4738.
2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Paulais M, Lourdel S and Teulon J:
Properties of an inwardly rectifying K(+) channel in the
basolateral membrane of mouse TAL. Am J Physiol Renal Physiol.
282:F866–F876. 2002.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang W, Hebert SC and Giebisch G: Renal
K+ channels: Structure and function. Annu Rev Physiol.
59:413–436. 1997.PubMed/NCBI View Article : Google Scholar
|
22
|
Ponce-Coria J, San Cristobal P, Kahle KT,
Vazquez N, Pacheco-Alvarez D, de Los Heros P, Juárez P, Muñoz E,
Michel G, Bobadilla NA, et al: Regulation of NKCC2 by a
chloride-sensing mechanism involving the WNK3 and SPAK kinases.
Proc Natl Acad Sci. 105:8458–8463. 2008.PubMed/NCBI View Article : Google Scholar
|
23
|
Ma SZ, Du J and Ma LR: The change of
urinary osmolalities and plasma osmolalities in diabetic rats
induced by STZ. Chin Lab Diagn. 12:976–978. 2008.
|
24
|
Zhang Y, Liu T, Chen Y, Dong Z, Zhang J,
Sun Y, Jin B, Gao F, Guo S and Zhuang R: CD226 reduces endothelial
cell glucose uptake under hyperglycemic conditions with
inflammation in type 2 diabetes mellitus. Oncotarget.
7:12010–12023. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Darwish NM, Elnahas YM and Alqahtany FS:
Diabetes induced renal complications by leukocyte activation of
nuclear factor κ-B and its regulated genes expression. Saudi J Biol
Sci. 28:541–549. 2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Ortiz A, González-Cuadrado S, Bustos C,
Alonso J, Gómez-Guerrero C, López-Armada MJ, González-Arana E,
Plaza JJ and Egido J: Tumor necrosis factor as a mediator of
glomerular damage. J Nephrol. 8:27–34. 1995.
|
27
|
Xu C, Chang A, Hack BK, Eadon MT, Alper SL
and Cunningham PN: TNF-mediated damage to glomerular endothelium is
an important determinant of acute kidney injury in sepsis. Kidney
Int. 85:72–81. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Mccarthy E, Sharma R, Sharma M, Li JZ, Ge
XL, Dileepan KN and Savin VJ: TNF-alpha increases albumin
permeability of isolated rat glomeruli through the generation of
superoxide. J Am Soc Nephrol. 9:433–438. 1998.PubMed/NCBI View Article : Google Scholar
|
29
|
Battula S, Hao S, Pedraza PL, Stier CT and
Ferreri NR: Tumor necrosis factor-alpha induces renal
cyclooxygenase-2 expression in response to hypercalcemia.
Prostaglandins Other Lipid Mediat. 99:45–50. 2012.PubMed/NCBI View Article : Google Scholar
|
30
|
Nasrallah R, Hassouneh R and Hebert RL:
PGE2, kidney disease, and cardiovascular risk: Beyond
hypertension and diabetes. J Am Soc Nephrol. 27:666–676.
2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Murakami M, Nakatani Y, Atsumi GI, Inoue K
and Kudo I: Regulatory functions of Phospholipase A2. Crit Rev
Immunol. 37:127–195. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Murakami M and Kudo I: Phospholipase A2. J
Biochem. 131:285–292. 2002.PubMed/NCBI View Article : Google Scholar
|
33
|
Kudo I and Murakami M: Prostaglandin E
synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J
Biochem Mol Biol. 38:633–638. 2005.PubMed/NCBI View Article : Google Scholar
|
34
|
Quilley J, Santos M and Pedraza P: Renal
protective effect of chronic inhibition of COX-2 with SC-58236 in
streptozotocin-diabetic rats. Am J Physiol Heart Circ Physiol.
300:H2316–H2322. 2011.PubMed/NCBI View Article : Google Scholar
|
35
|
Nasrallah R, Landry A, Singh S, Sklepowicz
M and Hébert RL: Increased expression of cyclooxygenase-1 and -2 in
the diabetic rat renal medulla. Am J Physiol Renal Physiol.
285:F1068–F1077. 2003.PubMed/NCBI View Article : Google Scholar
|
36
|
Langenbach R, Morham SG, Tiano HF, Loftin
CD, Ghanayem BI, Chulada PC, Mahler JF, Lee CA, Goulding EH,
Kluckman KD, et al: Prostaglandin synthase 1 gene disruption in
mice reduces arachidonic acid-induced inflammation and
indomethacin-induced gastric ulceration. Cell. 83:483–492.
1995.PubMed/NCBI View Article : Google Scholar
|
37
|
Morham SG, Langenbach R, Loftin CD, Tiano
HF, Vouloumanos N, Jennette JC, Mahler JF, Kluckman KD, Ledford A,
Lee CA and Smithies O: Prostaglandin synthase 2 gene disruption
causes severe renal pathology in the mouse. Cell. 83:473–482.
1995.PubMed/NCBI View Article : Google Scholar
|
38
|
Jia Z, Sun Y, Liu S, Liu Y and Yang T:
COX-2 but not mPGES-1 contributes to renal PGE2 induction and
diabetic proteinuria in mice with type-1 diabetes. PLoS One.
9(e93182)2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Komers R, Lindsley JN, Oyama TT and
Anderson S: Cyclo-oxygenase-2 inhibition attenuates the progression
of nephropathy in uninephrectomized diabetic rats. Clin Exp
Pharmacol Physiol. 34:36–41. 2007.PubMed/NCBI View Article : Google Scholar
|