1
|
Taitt HE: Global trends and prostate
cancer: A review of incidence, detection, and mortality as
influenced by race, ethnicity, and geographic location. Am J Mens
Health. 12:1807–1823. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Global cancer statistics, 2002. CA Cancer J Clin. 55:74–108.
2005.PubMed/NCBI View Article : Google Scholar
|
3
|
Gilbert SM and McKiernan JM: Epidemiology
of male osteoporosis and prostate cancer. Curr Opin Urol. 15:23–27.
2005.PubMed/NCBI View Article : Google Scholar
|
4
|
Sturge J, Caley MP and Waxman J: Bone
metastasis in prostate cancer: Emerging therapeutic strategies. Nat
Rev Clin Oncol. 8:357–368. 2011.PubMed/NCBI View Article : Google Scholar
|
5
|
Wong SK, Mohamad NV, Giaze TR, Chin KY,
Mohamed N and Ima-Nirwana S: Prostate cancer and bone metastases:
The underlying mechanisms. Int J Mol Sci. 20(2587)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Boukouris S and Mathivanan S: Exosomes in
bodily fluids are a highly stable resource of disease biomarkers.
Proteomics Clin Appl. 9:358–367. 2015.PubMed/NCBI View Article : Google Scholar
|
7
|
Mitchell PJ, Welton J, Staffurth J, Court
J, Mason MD, Tabi Z and Clayton A: Can urinary exosomes act as
treatment response markers in prostate cancer? J Transl Med.
7(4)2009.PubMed/NCBI View Article : Google Scholar
|
8
|
Conde-Vancells J, Rodriguez-Suarez E,
Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM
and Falcon-Perez JM: Characterization and comprehensive proteome
profiling of exosomes secreted by hepatocytes. J Proteome Res.
7:5157–5166. 2008.PubMed/NCBI View Article : Google Scholar
|
9
|
Théry C, Zitvogel L and Amigorena S:
Exosomes: Composition, biogenesis and function. Nat Rev Immunol.
2:569–579. 2002.PubMed/NCBI View
Article : Google Scholar
|
10
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J
and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and
function. Genomics Proteomics Bioinformatics. 13:17–24.
2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Png KJ, Halberg N, Yoshida M and Tavazoie
SF: A microRNA regulon that mediates endothelial recruitment and
metastasis by cancer cells. Nature. 481:190–194. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Lee J, Kwon MH, Kim JA and Rhee WJ:
Detection of exosome miRNAs using molecular beacons for diagnosing
prostate cancer. Artif Cells Nanomed Biotechnol. 46 (Sup3):S52–S63.
2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Xue M, Zhuo Y and Shan B: MicroRNAs, long
noncoding RNAs, and their functions in human disease. Methods Mol
Biol. 1617:1–25. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J,
Zhou K, Liu X, Ren X, Wang F, et al: Cancer-derived exosomal
miR-25-3p promotes pre-metastatic niche formation by inducing
vascular permeability and angiogenesis. Nat Commun.
9(5395)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC,
Tsai PH, Wu CY and Kuo PL: Hypoxic lung cancer-secreted exosomal
miR-23a increased angiogenesis and vascular permeability by
targeting prolyl hydroxylase and tight junction protein ZO-1.
Oncogene. 36:4929–4942. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297.
2004.PubMed/NCBI View Article : Google Scholar
|
17
|
Mitchell PS, Parkin RK, Kroh EM, Fritz BR,
Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant
KC, Allen A, et al: Circulating microRNAs as stable blood-based
markers for cancer detection. Proc Natl Acad Sci USA.
105:10513–10518. 2008.PubMed/NCBI View Article : Google Scholar
|
18
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007.PubMed/NCBI View Article : Google Scholar
|
19
|
Bellavia D, Salamanna F, Raimondi L, De
Luca A, Carina V, Costa V, Alessandro R, Fini M and Giavaresi G:
Deregulated miRNAs in osteoporosis: Effects in bone metastasis.
Cell Mol Life Sci. 76:3723–3744. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Seeliger C, Karpinski K, Haug AT, Vester
H, Schmitt A, Bauer JS and van Griensven M: Five freely circulating
miRNAs and bone tissue miRNAs Are associated with osteoporotic
fractures. J Bone Miner Res. 29:1718–1728. 2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Bedene A, Mencej Bedrač S, Ješe L, Marc J,
Vrtačnik P, Preželj J, Kocjan T, Kranjc T and Ostanek B: MiR-148a
the epigenetic regulator of bone homeostasis is increased in plasma
of osteoporotic postmenopausal women. Wien Klin Wochenschr. 128
(Suppl 7):S519–S526. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Kelch S, Balmayor ER, Seeliger C, Vester
H, Kirschke JS and van Griensven M: miRNAs in bone tissue correlate
to bone mineral density and circulating miRNAs are gender
independent in osteoporotic patients. Sci Rep.
7(15861)2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Cheng P, Chen C, He HB, Hu R, Zhou HD, Xie
H, Zhu W, Dai RC, Wu XP, Liao EY and Luo XH: miR-148a regulates
osteoclastogenesis by targeting V-maf musculoaponeurotic
fibrosarcoma oncogene homolog B. J Bone Miner Res. 28:1180–1190.
2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Chen H, Zhou L, Wu X, Li R, Wen J, Sha J
and Wen X: The PI3K/AKT pathway in the pathogenesis of prostate
cancer. Front Biosci (Landmark Ed). 21:1084–1091. 2016.PubMed/NCBI View
Article : Google Scholar
|
25
|
Mayer IA and Arteaga CL: The PI3K/AKT
pathway as a target for cancer treatment. Annu Rev Med. 67:11–28.
2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Edlind MP and Hsieh AC: PI3K-AKT-mTOR
signaling in prostate cancer progression and androgen deprivation
therapy resistance. Asian J Androl. 16:378–386. 2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhu W, Hu X, Xu J, Cheng Y, Shao Y and
Peng Y: Effect of PI3K/Akt signaling pathway on the process of
prostate cancer metastasis to bone. Cell Biochem Biophys.
72:171–177. 2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Tang LA, Dixon BN, Maples KT, Poppiti KM
and Peterson TJ: Current and investigational agents targeting the
phosphoinositide 3-kinase pathway. Pharmacotherapy. 38:1058–1067.
2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Théry C, Amigorena S, Raposo G and Clayton
A: Isolation and characterization of exosomes from cell culture
supernatants and biological fluids. Curr Protoc Cell Biol Chapter.
3(Unit 3.22)2006.PubMed/NCBI View Article : Google Scholar
|
30
|
Skog J, Würdinger T, van Rijn S, Meijer
DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky
AM and Breakefield XO: Glioblastoma microvesicles transport RNA and
proteins that promote tumour growth and provide diagnostic
biomarkers. Nat Cell Biol. 10:1470–1476. 2008.PubMed/NCBI View
Article : Google Scholar
|
31
|
Urabe F, Kosaka N, Kimura T, Egawa S and
Ochiya T: Extracellular vesicles: Toward a clinical application in
urological cancer treatment. Int J Urol. 25:533–543.
2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Schmittgen T and Livak K: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Janssen JC, Woythal N, Meißner S, Prasad
V, Brenner W, Diederichs G, Hamm B and Makowski MR:
[68Ga]PSMA-HBED-CC uptake in osteolytic, osteoblastic,
and bone marrow metastases of prostate cancer patients. Mol Imaging
Biol. 19:933–943. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Fang J and Xu Q: Differences of
osteoblastic bone metastases and osteolytic bone metastases in
clinical features and molecular characteristics. Clin Transl Oncol.
17:173–179. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Torrealba N, Rodriguez-Berriguete G,
Fraile B, Olmedilla G, Martínez-Onsurbe P, Sánchez-Chapado M,
Paniagua R and Royuela M: PI3K pathway and Bcl-2 family.
Clinicopathological features in prostate cancer. Aging Male.
21:211–222. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Shao B, Fu X, Yu Y and Yang D: Regulatory
effects of miRNA-181a on FasL expression in bone marrow mesenchymal
stem cells and its effect on CD4+T lymphocyte apoptosis in estrogen
deficiency-induced osteoporosis. Mol Med Rep. 18:920–930.
2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Che Y, Shi X, Shi Y, Jiang X, Ai Q, Shi Y,
Gong F and Jiang W: Exosomes derived from miR-143-overexpressing
MSCs inhibit cell migration and invasion in human prostate cancer
by downregulating TFF3. Mol Ther Nucleic Acids. 18:232–244.
2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Fornetti J, Welm AL and Stewart SA:
Understanding the bone in cancer metastasis. J Bone Miner Res.
33:2099–2113. 2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Raimondi L, De Luca A, Amodio N, Manno M,
Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci
O, et al: Involvement of multiple myeloma cell-derived exosomes in
osteoclast differentiation. Oncotarget. 6:13772–13789.
2015.PubMed/NCBI View Article : Google Scholar
|
40
|
Fathi E, Valipour B, Sanaat Z, Nozad
Charoudeh H and Farahzadi R: Interleukin-6, -8, and TGF-β secreted
from mesenchymal stem cells show functional role in reduction of
telomerase activity of leukemia cell via Wnt5a/β-catenin and P53
pathways. Adv Pharm Bull. 10:307–314. 2020.PubMed/NCBI View Article : Google Scholar
|