1
|
Schwab JM, Maas AIR, Hsieh JTC and Curt A:
Raising awareness for spinal cord injury research. Lancet Neurol.
17:581–582. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Jendelova P: Therapeutic strategies for
spinal cord injury. Int J Mol Sci. 19(3200)2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Venkatesh K, Ghosh SK, Mullick M,
Manivasagam G and Sen D: Spinal cord injury: Pathophysiology,
treatment strategies, associated challenges, and future
implications. Cell Tissue Res. 377:125–151. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Wang JL, Luo X and Liu L: Targeting CARD6
attenuates spinal cord injury (SCI) in mice through inhibiting
apoptosis, inflammation and oxidative stress associated ROS
production. Aging (Albany NY). 11:12213–12235. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Guan B, Chen R, Zhong M, Liu N and Chen Q:
Protective effect of oxymatrine against acute spinal cord injury in
rats via modulating oxidative stress, inflammation and apoptosis.
Metab Brain Dis. 35:149–157. 2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Vishnoi A and Rani S: miRNA biogenesis and
regulation of diseases: An overview. Methods Mol Biol. 1509:1–10.
2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Jiao S, Liu Y, Yao Y and Teng J: miR-124
promotes proliferation and neural differentiation of neural stem
cells through targeting DACT1 and activating Wnt/β-catenin
pathways. Mol Cell Biochem. 449:305–314. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Yuan Z, Zhong L, Liu D, Yao J, Liu J,
Zhong P, Yao S, Zhao Y, Li L, Chen M, et al: miR-15b regulates cell
differentiation and survival by targeting CCNE1 in APL cell lines.
Cell Signal. 60:57–64. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Dai J, Xu LJ, Han GD, Sun HL, Zhu GT,
Jiang HT, Yu GY and Tang XM: miR-137 attenuates spinal cord injury
by modulating NEUROD4 through reducing inflammation and oxidative
stress. Eur Rev Med Pharmacol Sci. 22:1884–1890. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Jiao G, Pan B, Zhou Z, Zhou L, Li Z and
Zhang Z: MicroRNA-21 regulates cell proliferation and apoptosis in
H2O2-stimulated rat spinal cord neurons. Mol
Med Rep. 12:7011–7016. 2015.PubMed/NCBI View Article : Google Scholar
|
12
|
Liu D and Bao F: Hydrogen peroxide
administered into the rat spinal cord at the level elevated by
contusion spinal cord injury oxidizes proteins, DNA and membrane
phospholipids, and induces cell death: Attenuation by a
metalloporphyrin. Neuroscience. 285:81–96. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhu H, Wang X and Chen S: Downregulation
of miR-218-5p protects against oxygen-glucose
deprivation/reperfusion-induced injuries of PC12 cells via
upregulating N-myc downstream regulated gene 4 (NDRG4). Med Sci
Monit. 26(e920101)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhu L, Tu H, Liang Y and Tang D: miR-218
produces anti-tumor effects on cervical cancer cells in vitro.
World J Surg Oncol. 16(204)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Cao Q, Dong P and Wang Y, Zhang J, Shi X
and Wang Y: miR-218 suppresses cardiac myxoma proliferation by
targeting myocyte enhancer factor 2D. Oncol Rep. 33:2606–2612.
2015.PubMed/NCBI View Article : Google Scholar
|
16
|
Li L and Zhao G: Downregulation of
microRNA-218 relieves neuropathic pain by regulating suppressor of
cytokine signaling 3. Int J Mol Med. 37:851–858. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Yin D, Zheng X, Zhuang J, Wang L, Liu B
and Chang Y: Downregulation of long noncoding RNA Sox2ot protects
PC-12 cells from hydrogen peroxide-induced injury in spinal cord
injury via regulating the miR-211-myeloid cell leukemia-1 isoform2
axis. J Cell Biochem. 119:9675–9684. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Guo Z, Li L, Gao Y, Zhang X and Cheng M:
Overexpression of lncRNA ANRIL aggravated hydrogen
peroxide-disposed injury in PC-12 cells via inhibiting
miR-499a/PDCD4 axis-mediated PI3K/Akt/mTOR/p70S6K pathway. Artif
Cells Nanomed Biotechnol. 47:2624–2633. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang Y, Sun B, Zhao L, Liu Z, Xu Z, Tian
Y and Hao C: Up-regulation of miRNA-148a inhibits proliferation,
invasion, and migration while promoting apoptosis of cervical
cancer cells by down-regulating RRS1. Biosci Rep.
39(BSR20181815)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Eckert MJ and Martin MJ: Trauma: Spinal
cord injury. Surg Clin North Am. 97:1031–1045. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Li Z, Wu F, Xu D, Zhi Z and Xu G:
Inhibition of TREM1 reduces inflammation and oxidative stress after
spinal cord injury (SCI) associated with HO-1 expressions. Biomed
Pharmacother. 109:2014–2021. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Abou-El-Hassan H, Bsat S, Sukhon F, Assaf
EJ, Mondello S, Kobeissy F, Wang KKW, Weiner HL and Omeis I:
Protein degradome of spinal cord injury: Biomarkers and potential
therapeutic targets. Mol Neurobiol. 57:2702–2726. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Pinchi E, Frati A, Cantatore S, D'Errico
S, Russa R, Maiese A, Palmieri M, Pesce A, Viola RV, Frati P and
Fineschi V: Acute spinal cord injury: A systematic review
investigating miRNA FAMILIES INVolved. Int J Mol Sci.
20(1841)2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Lu W, Wan X, Tao L and Wan J: Long
non-coding RNA HULC promotes cervical cancer cell proliferation,
migration and invasion via miR-218/TPD52 axis. Onco Targets Ther.
13:1109–1118. 2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Li XC, Hai JJ, Tan YJ, Yue QF and Liu LJ:
miR-218 suppresses metastasis and invasion of endometrial cancer
via negatively regulating ADD2. Eur Rev Med Pharmacol Sci.
23:1408–1417. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Wen YD, Wang H, Kho SH, Rinkiko S, Sheng
X, Shen HM and Zhu YZ: Hydrogen sulfide protects HUVECs against
hydrogen peroxide induced mitochondrial dysfunction and oxidative
stress. PLoS One. 8(e53147)2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Ravanan P, Srikumar IF and Talwar P:
Autophagy: The spotlight for cellular stress responses. Life Sci.
188:53–67. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Parzych KR and Klionsky DJ: An overview of
autophagy: Morphology, mechanism, and regulation. Antioxid Redox
Signal. 20:460–473. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Ray SK: Modulation of autophagy for
neuroprotection and functional recovery in traumatic spinal cord
injury. Neural Regen Res. 15:1601–1612. 2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Yoshimura A: Regulation of cytokine
signaling by the SOCS and Spred family proteins. Keio J Med.
58:73–83. 2009.PubMed/NCBI View Article : Google Scholar
|
31
|
Takahashi S, Yoshimura T, Ohkura T,
Fujisawa M, Fushimi S, Ito T, Itakura J, Hiraoka S, Okada H,
Yamamoto K and Matsukawa A: A novel role of spred2 in the colonic
epithelial cell homeostasis and inflammation. Sci Rep.
6(37531)2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Jiang K, Liu M, Lin G, Mao B, Cheng W, Liu
H, Gal J, Zhu H, Yuan Z, Deng W, et al: Tumor suppressor spred2
interaction with LC3 promotes autophagosome maturation and induces
autophagy-dependent cell death. Oncotarget. 7:25652–25667.
2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Ullrich M, Aßmus B, Augustin AM, Häbich H,
Abeßer M, Martin Machado J, Werner F, Erkens R, Arias-Loza AP,
Umbenhauer S, et al: Spred2 deficiency elicits cardiac arrhythmias
and premature death via impaired autophagy. J Mol Cell Cardiol.
129:13–26. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Mardakheh FK, Yekezare M, Machesky LM and
Heath JK: Spred2 interaction with the late endosomal protein NBR1
down-regulates fibroblast growth factor receptor signaling. J Cell
Biol. 187:265–277. 2009.PubMed/NCBI View Article : Google Scholar
|
35
|
Chen KC, Liao YC, Wang JY, Lin YC, Chen CH
and Juo SH: Oxidized low-density lipoprotein is a common risk
factor for cardiovascular diseases and gastroenterological cancers
via epigenomical regulation of microRNA-210. Oncotarget.
6:24105–24118. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Xu Y, Ito T, Fushimi S, Takahashi S,
Itakura J, Kimura R, Sato M, Mino M, Yoshimura A and Matsukawa A:
Spred-2 deficiency exacerbates lipopolysaccharide-induced acute
lung inflammation in mice. PLoS One. 9(e108914)2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Hu L, Ye H and Liao J: LncRNA TUG1
reverses LPS-induced cell apoptosis and inflammation of macrophage
via targeting miR-221-3p/SPRED2 axis. Biosci Biotechnol Biochem.
84:2458–2465. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Peng W, Li J, Chen R, Gu Q, Yang P, Qian
W, Ji D, Wang Q, Zhang Z, Tang J and Sun Y: Upregulated METTL3
promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK
signaling pathway. J Exp Clin Cancer Res. 38(393)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Sung YJ, Cheng CL, Chen CS, Huang HB,
Huang FL, Wu PC, Shiao MS and Tsay HJ: Distinct mechanisms account
for beta-amyloid toxicity in PC12 and differentiated PC12 neuronal
cells. J Biomed Sci. 10:379–388. 2003.PubMed/NCBI View Article : Google Scholar
|