1
|
Deutschman CS and Tracey KJ: Sepsis:
Current dogma and new perspectives. Immunity. 40:463–475.
2014.PubMed/NCBI View Article : Google Scholar
|
2
|
van Engelen TSR, Wiersinga WJ, Scicluna BP
and van der Poll T: biomarkers in sepsis. Crit Care Clin.
34:139–152. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Sato R and Nasu M: A review of
sepsis-induced cardiomyopathy. J Intensive Care.
3(48)2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Li F, Lang F, Zhang H, Xu L, Wang Y, Zhai
C and Hao E: Apigenin alleviates endotoxin-induced myocardial
toxicity by modulating inflammation, oxidative stress, and
autophagy. Oxid Med Cell Longev. 2017(2302896)2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Hao E, Lang F, Chen Y, Zhang H, Cong X,
Shen X and Su G: Resveratrol alleviates endotoxin-induced
myocardial toxicity via the Nrf2 transcription factor. PLoS One.
8(e69452)2013.PubMed/NCBI View Article : Google Scholar
|
6
|
Peng F, Chang W, Sun Q, Xu X, Xie J, Qiu H
and Yang Y: HGF alleviates septic endothelial injury by inhibiting
pyroptosis via the mTOR signalling pathway. Respir Res.
21(215)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Dai XG, Li Q, Li T, Huang WB, Zeng ZH,
Yang Y, Duan ZP, Wang YJ and Ai YH: The interaction between C/EBPβ
and TFAM promotes acute kidney injury via regulating NLRP3
inflammasome-mediated pyroptosis. Mol Immunol. 127:136–145.
2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Fu Q, Wu J, Zhou XY, Ji MH, Mao QH, Li Q,
Zong MM, Zhou ZQ and Yang JJ: NLRP3/caspase-1 pathway-induced
pyroptosis mediated cognitive deficits in a mouse model of
sepsis-associated encephalopathy. Inflammation. 42:306–318.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Wu C, Lu W, Zhang Y, Zhang G, Shi X,
Hisada Y, Grover SP, Zhang X, Li L, Xiang B, et al: Inflammasome
activation triggers blood clotting and host death through
pyroptosis. Immunity. 50:1401–1411.e4. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Bordon Y: Mucosal immunology:
Inflammasomes induce sepsis following community breakdown. Nat Rev
Immunol. 12:400–401. 2012.PubMed/NCBI View
Article : Google Scholar
|
11
|
Pu Q, Gan C, Li R, Li Y, Tan S, Li X, Wei
Y, Lan L, Deng X, Liang H, Ma F and Wu M: Atg7 deficiency
intensifies inflammasome activation and pyroptosis in pseudomonas
sepsis. J Immunol. 198:3205–3213. 2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Li Z, Guo J and Bi L: Role of the NLRP3
inflammasome in autoimmune diseases. Biomed Pharmacother.
130(110542)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Martinon F, Burns K and Tschopp J: The
inflammasome: A molecular platform triggering activation of
inflammatory caspases and processing of proIL-beta. Mol Cell.
10:417–426. 2002.PubMed/NCBI View Article : Google Scholar
|
14
|
Kanneganti TD, Ozören N, Body-Malapel M,
Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M,
Vandenabeele P, et al: Bacterial RNA and small antiviral compounds
activate caspase-1 through cryopyrin/Nalp3. Nature. 440:233–236.
2006.PubMed/NCBI View Article : Google Scholar
|
15
|
Mariathasan S, Weiss DS, Newton K, McBride
J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM and
Dixit VM: Cryopyrin activates the inflammasome in response to
toxins and ATP. Nature. 440:228–232. 2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Karki R and Kanneganti TD: Diverging
inflammasome signals in tumorigenesis and potential targeting. Nat
Rev Cancer. 19:197–214. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Malireddi RKS, Gurung P, Mavuluri J,
Dasari TK, Klco JM, Chi H and Kanneganti TD: TAK1 restricts
spontaneous NLRP3 activation and cell death to control myeloid
proliferation. J Exp Med. 215:1023–1034. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Man SM and Kanneganti TD: Converging roles
of caspases in inflammasome activation, cell death and innate
immunity. Nat Rev Immunol. 16:7–21. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Venegas C, Kumar S, Franklin BS, Dierkes
T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S,
Santarelli F, Kummer MP, et al: Microglia-derived ASC specks
cross-seed amyloid-β in Alzheimer's disease. Nature. 552:355–361.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
He Y, Hara H and Núñez G: Mechanism and
regulation of NLRP3 inflammasome activation. Trends Biochem Sci.
41:1012–1021. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Kelley N, Jeltema D, Duan Y and He Y: The
NLRP3 Inflammasome: An overview of mechanisms of activation and
regulation. Int J Mol Sci. 20(3328)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Tschopp J and Schroder K: NLRP3
inflammasome activation: The convergence of multiple signalling
pathways on ROS production? Nat Rev Immunol. 10:210–215.
2010.PubMed/NCBI View
Article : Google Scholar
|
23
|
Zhou R, Tardivel A, Thorens B, Choi I and
Tschopp J: Thioredoxin-interacting protein links oxidative stress
to inflammasome activation. Nat Immunol. 11:136–140.
2010.PubMed/NCBI View
Article : Google Scholar
|
24
|
Beckham C, Hilliker A, Cziko AM, Noueiry
A, Ramaswami M and Parker R: The DEAD-box RNA helicase Ded1p
affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol
Biol Cell. 19:984–993. 2008.PubMed/NCBI View Article : Google Scholar
|
25
|
Garbelli A, Radi M, Falchi F, Beermann S,
Zanoli S, Manetti F, Dietrich U, Botta M and Maga G: Targeting the
human DEAD-box polypeptide 3 (DDX3) RNA helicase as a novel
strategy to inhibit viral replication. Curr Med Chem. 18:3015–3027.
2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Soulat D, Bürckstümmer T, Westermayer S,
Goncalves A, Bauch A, Stefanovic A, Hantschel O, Bennett KL, Decker
T and Superti-Furga G: The DEAD-box helicase DDX3X is a critical
component of the TANK-binding kinase 1-dependent innate immune
response. EMBO J. 27:2135–2146. 2008.PubMed/NCBI View Article : Google Scholar
|
27
|
Botlagunta M, Vesuna F, Mironchik Y, Raman
A, Lisok A, Winnard P Jr, Mukadam S, Van Diest P, Chen JH,
Farabaugh P, et al: Oncogenic role of DDX3 in breast cancer
biogenesis. Oncogene. 27:3912–3922. 2008.PubMed/NCBI View Article : Google Scholar
|
28
|
Bol GM, Vesuna F, Xie M, Zeng J, Aziz K,
Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, et al:
Targeting DDX3 with a small molecule inhibitor for lung cancer
therapy. EMBO Mol Med. 7:648–669. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Samir P, Kesavardhana S, Patmore DM,
Gingras S, Malireddi RK, Karki R, Guy CS, Briard B, Place DE,
Bhattacharya A, et al: DDX3X acts as a live-or-die checkpoint in
stressed cells by regulating NLRP3 inflammasome. Nature.
573:590–594. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Lu A, Magupalli VG, Ruan J, Yin Q,
Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H and Egelman
EH: Unified polymerization mechanism for the assembly of
ASC-dependent inflammasomes. Cell. 156:1193–1206. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Franklin BS, Bossaller L, De Nardo D,
Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR,
Al-Amoudi A, et al: The adaptor ASC has extracellular and
‘prionoid’ activities that propagate inflammation. Nat Immunol.
15:727–737. 2014.PubMed/NCBI View
Article : Google Scholar
|
32
|
Duncan JA, Bergstralh DT, Wang Y,
Willingham SB, Ye Z, Zimmermann AG and Ting JP: Cryopyrin/NALP3
binds ATP/dATP, is an ATPase, and requires ATP binding to mediate
inflammatory signaling. Proc Natl Acad Sci USA. 104:8041–8046.
2007.PubMed/NCBI View Article : Google Scholar
|
33
|
Mavridis K, Stravodimos K and Scorilas A:
Downregulation and prognostic performance of microRNA 224
expression in prostate cancer. Clin Chem. 59:261–269.
2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W
and Tang Q: STING-IRF3 contributes to lipopolysaccharide-induced
cardiac dysfunction, inflammation, apoptosis and pyroptosis by
activating NLRP3. Redox Biol. 24(101215)2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhaolin Z, Guohua L, Shiyuan W and Zuo W:
Role of pyroptosis in cardiovascular disease. Cell Prolif.
52(e12563)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Gao YL, Zhai JH and Chai YF: Recent
advances in the molecular mechanisms underlying pyroptosis in
sepsis. Mediators Inflamm. 2018(5823823)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Kalbitz M, Fattahi F, Grailer JJ, Jajou L,
Malan EA, Zetoune FS, Huber-Lang M, Russell MW and Ward PA:
Complement-induced activation of the cardiac NLRP3 inflammasome in
sepsis. FASEB J. 30:3997–4006. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang W, Tao A, Lan T, Cepinskas G, Kao R,
Martin CM and Rui T: Carbon monoxide releasing molecule-3 improves
myocardial function in mice with sepsis by inhibiting NLRP3
inflammasome activation in cardiac fibroblasts. Basic Res Cardiol.
112(16)2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP
and Xiao XZ: Shikonin Ameliorates LPS-induced cardiac dysfunction
by SIRT1-dependent inhibition of NLRP3 inflammasome. Front Physiol.
11(570441)2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Mo J, Liang H, Su C, Li P, Chen J and
Zhang B: DDX3X: Structure, physiologic functions and cancer. Mol
Cancer. 20(38)2021.PubMed/NCBI View Article : Google Scholar
|
41
|
Samir P and Kanneganti TD: DDX3X Sits at
the crossroads of liquid-liquid and prionoid phase transitions
arbitrating life and death cell fate decisions in stressed cells.
DNA Cell Biol. 39:1091–1095. 2020.PubMed/NCBI View Article : Google Scholar
|