1
|
Lee R, Wong TY and Sabanayagam C: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2(17)2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G, Jonas JB, Lamoureux EL, Cheng CY, Klein BEK, et al: Incidence and progression of diabetic retinopathy: A systematic review. Lancet Diabetes Endocrinol. 7:140–149. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Cheung N, Mitchell P and Wong TY: Diabetic retinopathy. Lancet. 376:124–136. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Lechner J, O'Leary OE and Stitt AW: The pathology associated with diabetic retinopathy. Vision Res. 139:7–14. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Xu Y, Cui K, Li J, Tang X, Lin J, Lu X, Huang R, Yang B, Shi Y, Ye D, et al: Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. 69(e12660)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Lynch SK and Abràmoff MD: Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 139:101–107. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H and Naseripour M: Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 193:20–33. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Coughlin BA, Feenstra DJ and Mohr S: Müller cells and diabetic retinopathy. Vision Res. 139:93–100. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Shen W, Fruttiger M, Zhu L, Chung SH, Barnett NL, Kirk JK, Lee S, Coorey NJ, Killingsworth M, Sherman LS, et al: Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J Neurosci. 32:15715–15727. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Zong H, Ward M, Madden A, Yong PH, Limb GA, Curtis TM and Stitt AW: Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia. 53:2656–2666. 2010.PubMed/NCBI View Article : Google Scholar
|
11
|
McDowell RE, Barabas P, Augustine J, Chevallier O, McCarron P, Chen M, McGeown JG and Curtis TM: Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug, 2-hydrazino-4,6-dimethylpyrimidine. Diabetologia. 61:2654–2667. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Wu S, Zhu X, Guo B, Zheng T, Ren J, Zeng W, Chen X and Ke M: Unfolded Protein Response Pathways Correlatively Modulate Endoplasmic Reticulum Stress Responses in Rat Retinal Müller Cells. J Ophthalmol. 2019(9028483)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Tien T, Zhang J, Muto T, Kim D, Sarthy VP and Roy S: High Glucose Induces Mitochondrial Dysfunction in Retinal Müller Cells: Implications for Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 58:2915–2921. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Rübsam A, Parikh S and Fort PE: Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci. 19(19)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Ito S and Nagata K: Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin Cell Dev Biol. 62:142–151. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhang X, Yang JJ, Kim YS, Kim KY, Ahn WS and Yang S: An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol. 36:405–414. 2010.PubMed/NCBI
|
17
|
Poschmann G, Sitek B, Sipos B, Ulrich A, Wiese S, Stephan C, Warscheid B, Klöppel G, Vander Borght A, Ramaekers FC, et al: Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol Cell Proteomics. 8:1105–1116. 2009.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhu J, Xiong G, Fu H, Evers BM, Zhou BP and Xu R: Chaperone Hsp47 Drives Malignant Growth and Invasion by Modulating an ECM Gene Network. Cancer Res. 75:1580–1591. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Sepulveda D, Rojas-Rivera D, Rodríguez DA, Groenendyk J, Köhler A, Lebeaupin C, Ito S, Urra H, Carreras-Sureda A, Hazari Y, et al: Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Mol Cell. 69:238–252.e7. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Yoneda A, Sakai-Sawada K, Minomi K and Tamura Y: Heat Shock Protein 47 Maintains Cancer Cell Growth by Inhibiting the Unfolded Protein Response Transducer IRE1α. Mol Cancer Res. 18:847–858. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Xu X, Qimuge A, Wang H, Xing C, Gu Y, Liu S, Xu H, Hu M and Song L: IRE1α/XBP1s branch of UPR links HIF1α activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure. Sci Rep. 7(13507)2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, et al: XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature. 508:103–107. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Yang J, Chen C, McLaughlin T, Wang Y, Le YZ, Wang JJ and Zhang SX: Loss of X-box binding protein 1 in Müller cells augments retinal inflammation in a mouse model of diabetes. Diabetologia. 62:531–543. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Liu X, Tang L and Liu Y: Mouse Müller Cell Isolation and Culture. Bio Protoc. 7(e2429)2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Pereiro X, Ruzafa N, Acera A, Urcola A and Vecino E: Optimization of a Method to Isolate and Culture Adult Porcine, Rats and Mice Müller Glia in Order to Study Retinal Diseases. Front Cell Neurosci. 14(7)2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhong Y, Li J, Chen Y, Wang JJ, Ratan R and Zhang SX: Activation of endoplasmic reticulum stress by hyperglycemia is essential for Müller cell-derived inflammatory cytokine production in diabetes. Diabetes. 61:492–504. 2012.PubMed/NCBI View Article : Google Scholar
|
28
|
Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR and Costagliola C: Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res. 2015(582060)2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, et al: NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia. 57:204–213. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, et al: VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes. 62:3863–3873. 2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Lieth E, LaNoue KF, Antonetti DA and Ratz M: The Penn State Retina Research Group. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. Exp Eye Res. 70:723–730. 2000.PubMed/NCBI View Article : Google Scholar
|
32
|
Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P and Reichenbach A: Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol. 37:221–227. 2002.PubMed/NCBI View Article : Google Scholar
|
33
|
Lai DW, Lin KH, Sheu WH, Lee MR, Chen CY, Lee WJ, Hung YW, Shen CC, Chung TJ, Liu SH, et al: TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy. Circ Res. 121:e37–e52. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Kheitan S, Minuchehr Z and Soheili ZS: Exploring the cross talk between ER stress and inflammation in age-related macular degeneration. PLoS One. 12(e0181667)2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, Clark AF and Sheffield VC: Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest. 124:1956–1965. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhou Y, Bennett TM and Shiels A: Lens ER-stress response during cataract development in Mip-mutant mice. Biochim Biophys Acta. 1862:1433–1442. 2016.PubMed/NCBI View Article : Google Scholar
|