1
|
Dimaras H and Corson TW: Retinoblastoma,
the visible CNS tumor: A review. J Neurosci Res. 97:29–44.
2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Tamboli D, Topham A, Singh N and Singh AD:
Retinoblastoma: A SEER dataset evaluation for treatment patterns,
survival, and second malignant neoplasms. Am J Ophthalmol.
160:953–958. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Rao R and Honavar SG: Retinoblastoma.
Indian J Pediatr. 84:937–944. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Fabian ID, Onadim Z, Karaa E, Duncan C,
Chowdhury T, Scheimberg I, Ohnuma SI, Reddy MA and Sagoo MS: The
management of retinoblastoma. Oncogene. 37:1551–1560.
2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Fabian ID, Puccinelli F, Gaillard MC,
Beckpopovic M and Munier FL: Diagnosis and management of secondary
epipapillary retinoblastoma. Br J Ophthalmol. 101:1412–1418.
2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Ulitsky I: Evolution to the rescue: Using
comparative genomics to understand long non-coding RNAs. Nat Rev
Genet. 17:601–614. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Hu C, Liu S, Han M, Wang Y and Xu C:
Knockdown of lncRNA XIST inhibits retinoblastoma progression by
modulating the miR-124/STAT3 axis. Biomed Pharmacother.
107:547–554. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Spizzo R, Almeida MI, Colombatti A and
Calin GA: Long non-coding RNAs and cancer: A new frontier of
translational research? Oncogene. 31:4577–4587. 2012.PubMed/NCBI View Article : Google Scholar
|
9
|
Geisler S and Coller J: RNA in unexpected
places: Long non-coding RNA functions in diverse cellular contexts.
Nat Rev Mol Cell Biol. 14:699–712. 2013.PubMed/NCBI View
Article : Google Scholar
|
10
|
Fan Q, Yang L, Zhang X, Peng X, Wei S, Su
D, Zhai Z, Hua X and Li H: The emerging role of exosome-derived
non-coding RNAs in cancer biology. Cancer Lett. 414:107–115.
2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Shang Y: LncRNA THOR acts as a
retinoblastoma promoter through enhancing the combination of c-myc
mRNA and IGF2BP1 protein. Biomed Pharmacother. 106:1243–1249.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Shang W, Yang Y, Zhang J and Wu Q: Long
noncoding RNA BDNF-AS is a potential biomarker and regulates cancer
development in human retinoblastoma. Biochem Biophys Res Commun.
497:1142–1148. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Chai P, Jia R, Jia R, Pan H, Wang S, Ni H,
Wang H, Zhou C, Shi Y, Ge S, et al: Dynamic chromosomal tuning of a
novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis.
Nucleic Acids Res. 46:6041–6056. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Misra JR and Irvine KD: The Hippo
Signaling Network and its biological functions. Annu Rev Genet.
52:65–87. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Esteban-Cardeñosa E, Duran M, Infante M,
Velasco E and Miner C: High-throughput mutation detection method to
scan BRCA1 and BRCA2 based on heteroduplex analysis by capillary
array electrophoresis. Clin Chem. 50:313–320. 2004.PubMed/NCBI View Article : Google Scholar
|
16
|
Ramasubramanian A, Sinha N, Rosenwasser RH
and Shields CL: Regression of advanced group e retinoblastoma with
intraarterial chemotherapy. Retin Cases Brief Rep. 6:406–408.
2012.PubMed/NCBI View Article : Google Scholar
|
17
|
Yang Y and Peng XW: The silencing of long
non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of
retinoblastoma cells through ATM-E2F1 signaling pathway. Biosci
Rep. 38(BSR20180558)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Xu W, Yang Z and Lu N: A new role for the
PI3K/Akt signaling pathway in the epithelial-mesenchymal
transition. Cell Adh Migr. 9:317–324. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Song Z, Du Y and Tao Y: Blockade of sonic
hedgehog signaling decreases viability and induces apoptosis in
retinoblastoma cells: The key role of the PI3K/Akt pathway. Oncol
Lett. 14:4099–4105. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Meng B, Qu W and Yuan H: Anticancer
effects of gingerol in retinoblastoma cancer cells (RB355 Cell
Line) are mediated via apoptosis induction, cell cycle arrest and
upregulation of PI3K/Akt signaling pathway. Med Sci Monit.
24:1980–1987. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Cambier S, Mu DZ, O'Connell D, Boylen K,
Travis W, Liu WH, Broaddus VC and Nishimura SL: A role for the
integrin alphavbeta8 in the negative regulation of epithelial cell
growth. Cancer Res. 60:7084–7093. 2000.PubMed/NCBI
|
22
|
Zhang HJ, Tao J, Sheng L, Hu X, Rong RM,
Xu M and Zhu TY: Twist2 promotes kidney cancer cell proliferation
and invasion by regulating ITGA6 and CD44 expression in the
ECM-receptor interaction pathway. Onco Targets Ther. 29:1801–1812.
2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Misra S, Hascall VC, Markwald RR and
Ghatak S: Interactions between Hyaluronan and its receptors (CD44,
RHAMM) regulate the activities of inflammation and cancer. Front
Immunol. 6(201)2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Yu A, Zhang J, Liu H, Liu B and Meng L:
Identification of nondiabetic heart failure-associated genes by
bioinformatics approaches in patients with dilated ischemic
cardiomyopathy. Exp Ther Med. 11:2602–2608. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Vakilian H, Mirzaei M, Sharifi TM, Pooyan
P, Habibi RL, Parker L, Haynes PA, Gourabi H, Baharvand H and
Salekdeh GH: DDX3Y, a male-specific region of Y chromosome gene,
may modulate neuronal differentiation. J Proteome Res.
14:3474–3483. 2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Ellwanger K, Becker E, Kienes I, Sowa A,
Postma Y, Cardona Gloria Y, Weber ANR and Kufer TA: The NLR family
pyrin domain containing 11 protein contributes to the regulation of
inflammatory signalling. J Biol Chem. 293:2701–2710.
2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Wu C, Su Z, Lin M, Ou J, Zhao W, Cui J and
Wang RF: NLRP11 attenuates Toll-like receptor signalling by
targeting TRAF6 for degradation via the ubiquitin ligase RNF19A.
Nat Commun. 8(1977)2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhang F, Wu X, Niu J, Kang X, Cheng L, Lv
Y and Wu M: GSTM1 polymorphism is related to risks of
nasopharyngeal cancer and laryngeal cancer: A meta-analysis. Onco
Targets Ther. 10:1433–1440. 2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Rodrigues-Fleming GH, Fernandes GMM, Russo
A, Biselli-Chicote PM, Netinho JG, Pavarino ÉC and Goloni-Bertollo
EM: Molecular evaluation of glutathione S transferase family genes
in patients with sporadic colorectal cancer. World J Gastroenterol.
24:4462–4471. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Malik MA, Gupta V, Shukla S and Kaur J:
Glutathione S-transferase (GSTM1, GSTT1) polymorphisms and JOAG
susceptibility: A case control study and meta-analysis in glaucoma.
Gene. 628:246–252. 2017.PubMed/NCBI View Article : Google Scholar
|