New perspectives on the roles of circular RNAs in osteoarthritis development and progression (Review)
- Authors:
- Guoding Cao
- Yuqi Pei
- Peng Li
- Peng Liu
- Yapeng Deng
- Yu Gao
- Jun Liu
- Xusheng Li
-
Affiliations: Department of Orthopedics, Affiliated Hospital of Gansu Medical College, Pingliang, Gansu 744000, P.R. China, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China, Department of Orthopedics, The 940th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China, Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, P.R. China - Published online on: October 21, 2021 https://doi.org/10.3892/etm.2021.10906
- Article Number: 1471
-
Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Neogi T: The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage. 21:1145–1153. 2013.PubMed/NCBI View Article : Google Scholar | |
Barbour KE, Helmick CG, Boring M and Brady TJ: Vital Signs: Prevalence of Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation - United States, 2013-2015. MMWR Morb Mortal Wkly Rep. 66:246–253. 2017.PubMed/NCBI View Article : Google Scholar | |
Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015.PubMed/NCBI View Article : Google Scholar | |
Taruc-Uy RL and Lynch SA: Diagnosis and treatment of osteoarthritis. Prim Care. 40:821–836, vii. 2013.PubMed/NCBI View Article : Google Scholar | |
Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, Towheed T, Welch V, Wells G and Tugwell P: American College of Rheumatology. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 64:465–474. 2012.PubMed/NCBI View Article : Google Scholar | |
Rausch Osthoff AK, Niedermann K, Braun J, Adams J, Brodin N, Dagfinrud H, Duruoz T, Esbensen BA, Günther KP, Hurkmans E, et al: 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann Rheum Dis. 77:1251–1260. 2018.PubMed/NCBI View Article : Google Scholar | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013.PubMed/NCBI View Article : Google Scholar | |
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7(e30733)2012.PubMed/NCBI View Article : Google Scholar | |
Suzuki H and Tsukahara T: A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 15:9331–9342. 2014.PubMed/NCBI View Article : Google Scholar | |
Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, et al: Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10:170–177. 2015.PubMed/NCBI View Article : Google Scholar | |
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI View Article : Google Scholar | |
Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15(409)2014.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013.PubMed/NCBI View Article : Google Scholar | |
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015.PubMed/NCBI View Article : Google Scholar | |
Thomas LF and Sætrom P: Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 30:2243–2246. 2014.PubMed/NCBI View Article : Google Scholar | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI View Article : Google Scholar | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009.PubMed/NCBI View Article : Google Scholar | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar | |
Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30:4414–4422. 2011.PubMed/NCBI View Article : Google Scholar | |
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar | |
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7(11215)2016.PubMed/NCBI View Article : Google Scholar | |
Chen B, Yu J, Guo L, Byers MS, Wang Z, Chen X, Xu H and Nie Q: Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p. Cells. 8(E177)2019.PubMed/NCBI View Article : Google Scholar | |
Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, Liu D, Wang M, Wang L, Zeng F, et al: CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 18:1646–1659. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhou ZB, Huang GX, Fu Q, Han B, Lu JJ, Chen AM and Zhu L: circRNA.33186 Contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther. 27:531–541. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhou Z, Du D, Chen A and Zhu L: Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis. Gene. 644:20–26. 2018.PubMed/NCBI View Article : Google Scholar | |
Shi L, Yan P, Liang Y, Sun Y, Shen J, Zhou S, Lin H, Liang X and Cai X: Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis. 8(e3171)2017.PubMed/NCBI View Article : Google Scholar | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017.PubMed/NCBI View Article : Google Scholar | |
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017.PubMed/NCBI View Article : Google Scholar | |
Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972.PubMed/NCBI View Article : Google Scholar | |
Fu Q, Li L, Wang B, Wu J, Li H, Han Y, Xiang D, Chen Y and Zhu J: CircADAMTS6/miR-431-5p axis regulate interleukin-1β induced chondrocyte apoptosis. J Gene Med. 23(e3304)2021.PubMed/NCBI View Article : Google Scholar | |
Wu Q, Yuan ZH, Ma XB and Tang XH: Low expression of CircRNA HIPK3 promotes osteoarthritis chondrocyte apoptosis by serving as a sponge of miR-124 to regulate SOX8. Eur Rev Med Pharmacol Sci. 24:7937–7945. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhou JL, Deng S, Fang HS, Du XJ, Peng H and Hu QJ: Circular RNA circANKRD36 regulates Casz1 by targeting miR-599 to prevent osteoarthritis chondrocyte apoptosis and inflammation. J Cell Mol Med. 25:120–131. 2021.PubMed/NCBI View Article : Google Scholar | |
Huang Z, Ma W, Xiao J, Dai X and Ling W: CircRNA_0092516 regulates chondrocyte proliferation and apoptosis in osteoarthritis through the miR-337-3p/PTEN axis. J Biochem. 169:467–475. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Luo S, Yang J, Li J, Huan S, She G and Zha Z: Circ_0114876 promoted IL-1β-induced chondrocyte injury by targeting miR-671/TRAF2 axis. Biotechnol Lett. 43:791–802. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Cheng F, Rong G, Tang Z and Gui B: Hsa_circ_0005567 activates autophagy and suppresses IL-1β-Induced shondrocyte apoptosis by regulating miR-495. Front Mol Biosci. 7(216)2020.PubMed/NCBI View Article : Google Scholar | |
Loeser RF, Goldring SR, Scanzello CR and Goldring MB: Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 64:1697–1707. 2012.PubMed/NCBI View Article : Google Scholar | |
Loeser RF: Molecular mechanisms of cartilage destruction in osteoarthritis. J Musculoskelet Neuronal Interact. 8:303–306. 2008.PubMed/NCBI | |
Goldring MB: The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 43:1916–1926. 2000.PubMed/NCBI View Article : Google Scholar | |
Di Liu D, Liang YH, Yang YT, He M, Cai ZJ, Xiao WF and Li YS: Circular RNA in osteoarthritis: an updated insight into the pathophysiology and therapeutics. Am J Transl Res. 13:11–23. 2021.PubMed/NCBI | |
Wu Y, Hong Z, Xu W, Chen J, Wang Q, Chen J, Ni W, Mei Z, Xie Z, Ma Y, et al: Circular RNA circPDE4D protects against osteoarthritis by binding to miR-103a-3p and regulating FGF18. Mol Ther. 29:308–323. 2021.PubMed/NCBI View Article : Google Scholar | |
Shen P, Yang Y, Liu G, Chen W, Chen J, Wang Q, Gao H, Fan S, Shen S and Zhao X: CircCDK14 protects against osteoarthritis by sponging miR-125a-5p and promoting the expression of Smad2. Theranostics. 10:9113–9131. 2020.PubMed/NCBI View Article : Google Scholar | |
Jiang R, Gao H, Cong F, Zhang W, Song T and Yu Z: Circ_DHRS3 positively regulates GREM1 expression by competitively targeting miR-183-5p to modulate IL-1β-administered chondrocyte proliferation, apoptosis and ECM degradation. Int Immunopharmacol. 91(107293)2021.PubMed/NCBI View Article : Google Scholar | |
Xiao J, Wang R, Zhou W, Cai X and Ye Z: Circular RNA CSNK1G1 promotes the progression of osteoarthritis by targeting the miR 4428/FUT2 axis. Int J Mol Med. 47:232–242. 2021.PubMed/NCBI View Article : Google Scholar | |
Bai ZM, Kang MM, Zhou XF and Wang D: CircTMBIM6 promotes osteoarthritis-induced chondrocyte extracellular matrix degradation via miR-27a/MMP13 axis. Eur Rev Med Pharmacol Sci. 24:7927–7936. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Shen P, Yao T, Ma J, Chen Z, Zhu J, Gong Z, Shen S and Fang X: Novel role of circRSU1 in the progression of osteoarthritis by adjusting oxidative stress. Theranostics. 11:1877–1900. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Zhang Y, Li X, Zhang M and Lv K: Microarray analysis of circular RNA expression patterns in polarized macrophages. Int J Mol Med. 39:373–379. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu CX, Li X, Nan F, Jiang S, Gao X, Guo SK, Xue W, Cui Y, Dong K, Ding H, et al: Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell. 177:865–880.e21. 2019.PubMed/NCBI View Article : Google Scholar | |
Kalaitzoglou E, Griffin TM and Humphrey MB: Innate immune responses and osteoarthritis. Curr Rheumatol Rep. 19(45)2017.PubMed/NCBI View Article : Google Scholar | |
Klein-Wieringa IR, de Lange-Brokaar BJ, Yusuf E, Andersen SN, Kwekkeboom JC, Kroon HM, van Osch GJ, Zuurmond AM, Stojanovic-Susulic V, Nelissen RG, et al: Inflammatory cells in patients with endstage knee osteoarthritis: A comparison between the synovium and the infrapatellar fat pad. J Rheumatol. 43:771–778. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Qi L, Chen R, He J, Liu Z, Wang W, Tu C and Li Z: Circular RNAs in osteoarthritis: indispensable regulators and novel strategies in clinical implications. Arthritis Res Ther. 23(23)2021.PubMed/NCBI View Article : Google Scholar | |
Chen C: Serum hsa_circ_101178 as a Potential Biomarker for Early Prediction of Osteoarthritis. Clin Lab: Aug 1, 2020 (Epub ahead of print). doi: 10.7754/Clin.Lab.2020.191251. | |
Yao T, Yang Y, Xie Z, Xu Y, Huang Y, Gao J, Shen S, Ye H, Iranmanesh Y, Fan S, et al: Circ0083429 regulates osteoarthritis progression via the Mir-346/SMAD3 axis. Front Cell Dev Biol. 8(579945)2021.PubMed/NCBI View Article : Google Scholar | |
Zhou Z, Ma J, Lu J, Chen A and Zhu L: Circular RNA CircCDH13 contributes to the pathogenesis of osteoarthritis via CircCDH13/miR-296-3p/PTEN axis. J Cell Physiol. 236:3521–3535. 2021.PubMed/NCBI View Article : Google Scholar | |
De Bari C and Roelofs AJ: Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol. 40:74–80. 2018.PubMed/NCBI View Article : Google Scholar | |
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999.PubMed/NCBI View Article : Google Scholar | |
Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, Lafont J, Denoix JM, Audigié F, Mallein-Gerin F, et al: Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta. 1840:2414–2440. 2014.PubMed/NCBI View Article : Google Scholar | |
Yang L, Bin Z, Hui S, Rong L, You B, Wu P, Han X, Qian H and Xu W: The role of CDR1as in proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells. Stem Cells Int. 2019(2316834)2019.PubMed/NCBI View Article : Google Scholar | |
Tu C, He J, Chen R and Li Z: The Emerging role of exosomal non-coding RNAs in musculoskeletal diseases. Curr Pharm Des. 25:4523–4535. 2019.PubMed/NCBI View Article : Google Scholar | |
Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019.PubMed/NCBI View Article : Google Scholar | |
Staubach S, Bauer FN, Tertel T, Börger V, Stambouli O, Salzig D and Giebel B: Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev. 177(113940)2021.PubMed/NCBI View Article : Google Scholar | |
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z and He W: Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B: Aug 12, 202 (Epub ahead of print). doi: 10.1016/j.apsb.2021.08.009. | |
Chang X, Ma Z, Zhu G, Lu Y and Yang J: New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J Bone Oncol. 29(100372)2021.PubMed/NCBI View Article : Google Scholar | |
van der Pol E, Böing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012.PubMed/NCBI View Article : Google Scholar | |
Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, Tang Y, Du L, Xu L, Wu F, et al: Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation. 142:556–574. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu D, Liang YH, Yang YT, He M, Cai ZJ, Xiao WF and Li YS: Circular RNA in osteoarthritis: An updated insight into the pathophysiology and therapeutics. Am J Transl Res. 13:11–23. 2021.PubMed/NCBI |