1
|
Feuerstein JD and Cheifetz AS: Ulcerative
colitis: Epidemiology, diagnosis, and management. Mayo Clin Proc.
89:1553–1563. 2014.PubMed/NCBI View Article : Google Scholar
|
2
|
Feagan BG, Rutgeerts P, Sands BE, Hanauer
S, Colombel JF, Sandborn WJ, Van Assche G, Axler J, Kim HJ, Danese
S, et al: Vedolizumab as induction and maintenance therapy for
ulcerative colitis. N Engl J Med. 369:699–710. 2013.PubMed/NCBI View Article : Google Scholar
|
3
|
Ng SC, Shi HY, Hamidi N, Underwood FE,
Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, et
al: Worldwide incidence and prevalence of inflammatory bowel
disease in the 21st century: A systematic review of
population-based studies. Lancet. 390:2769–2778. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Galipeau HJ, Caminero A, Turpin W,
Bermudez-Brito M, Santiago A, Libertucci J, Constante M, Raygoza
Garay JA, Rueda G, Armstrong S, et al: Novel fecal biomarkers that
precede clinical diagnosis of ulcerative colitis. Gastroenterology.
160:1532–1545. 2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Cleynen I, Boucher G, Jostins L, Schumm
LP, Zeissig S, Ahmad T, Andersen V, Andrews JM, Annese V and Brand
S: Inherited determinants of Crohn's disease and ulcerative colitis
phenotypes: A genetic association study. Lancet. 387:156–167.
2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Caballol B, Gudiño V, Panes J and Salas A:
Ulcerative colitis: Shedding light on emerging agents and
strategies in preclinical and early clinical development. Expert
Opin Investig Drugs. 30:931–946. 2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Carpenter S, Aiello D, Atianand MK, Ricci
EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M and Lawrence
JB: A long noncoding RNA mediates both activation and repression of
immune response genes. Science. 341:789–792. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Chu C, Qu K, Zhong FL, Artandi SE and
Chang HY: Genomic maps of long noncoding RNA occupancy reveal
principles of RNA-chromatin interactions. Mol Cell. 44:667–678.
2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Constanty F and Shkumatava A: lncRNAs in
development and differentiation: From sequence motifs to functional
characterization. Development. 148(dev182741)2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Mirza AH, Berthelsen CH, Seemann SE, Pan
X, Frederiksen KS, Vilien M, Gorodkin J and Pociot F:
Transcriptomic landscape of lncRNAs in inflammatory bowel disease.
Genome Med. 7(39)2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Qiao YQ, Huang ML, Xu AT, Zhao D, Ran ZH
and Shen J: LncRNA DQ786243 affects Treg related CREB and Foxp3
expression in Crohn's disease. J Biomed Sci. 20(87)2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Neurath MF: Cytokines in inflammatory
bowel disease. Nat Rev Immunol. 14:329–342. 2014.PubMed/NCBI View
Article : Google Scholar
|
13
|
Nielsen OH and Ainsworth MA: Tumor
necrosis factor inhibitors for inflammatory bowel disease. N Engl J
Med. 369:754–762. 2013.PubMed/NCBI View Article : Google Scholar
|
14
|
Chen SW, Wang PY, Liu YC, Sun L, Zhu J,
Zuo S, Ma J, Li TY, Zhang JL, Chen GW, et al: Effect of long
noncoding RNA H19 overexpression on intestinal barrier function and
its potential role in the pathogenesis of ulcerative colitis.
Inflamm Bowel Dis. 22:2582–2592. 2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Padua D, Mahurkar-Joshi S, Law IK,
Polytarchou C, Vu JP, Pisegna JR, Shih D, Iliopoulos D and
Pothoulakis C: A long noncoding RNA signature for ulcerative
colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J
Physiol Gastrointest Liver Physiol. 311:G446–G457. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Qiao C, Yang L, Wan J, Liu X, Pang C, You
W and Zhao G: Long noncoding RNA ANRIL contributes to the
development of ulcerative colitis by miR-323b-5p/TLR4/MyD88/NF-κB
pathway. Biochem Biophys Res Commun. 508:217–224. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Adriaens C, Standaert L, Barra J, Latil M,
Verfaillie A, Kalev P, Boeckx B, Wijnhoven PW, Radaelli E, Vermi W,
et al: p53 induces formation of NEAT1 lncRNA-containing
paraspeckles that modulate replication stress response and
chemosensitivity. Nat Med. 22:861–868. 2016.PubMed/NCBI View
Article : Google Scholar
|
18
|
Bu FT, Wang A, Zhu Y, You HM, Zhang YF,
Meng XM, Huang C and Li J: LncRNA NEAT1: Shedding light on
mechanisms and opportunities in liver diseases. Liver Int.
40:2612–2626. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Xu H, Chen Y, Zhuang J, Zhu S, Xu B and
Hong J: The role and mechanism of lncRNA NEAT1 in the fibrosis of
pulmonary epithelial cell. Mol Cell Toxicol. 16:185–191. 2020.
|
20
|
Zhang XN, Zhou J and Lu XJ: The long
noncoding RNA NEAT1 contributes to hepatocellular carcinoma
development by sponging miR-485 and enhancing the expression of the
STAT3. J Cell Physiol. 233:6733–6741. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Tian Y, Cui L, Lin C, Wang Y, Liu Z and
Miao X: LncRNA CDKN2B-AS1 relieved inflammation of ulcerative
colitis via sponging miR-16 and miR-195. Int Immunopharmacol.
88(106970)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Zhu M and Xie J: LncRNA MALAT1 promotes
ulcerative colitis by upregulating lncRNA ANRIL. Dig Dis Sci.
65:3191–3196. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Fu C, Li D, Zhang X, Liu N, Chi G and Jin
X: LncRNA PVT1 facilitates tumorigenesis and progression of glioma
via regulation of MiR-128-3p/GREM1 axis and BMP signaling pathway.
Neurotherapeutics. 15:1139–1157. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Sang Y, Chen B, Song X, Li Y, Liang Y, Han
D, Zhang N, Zhang H, Liu Y, Chen T, et al: circRNA_0025202
regulates tamoxifen sensitivity and tumor progression via
regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther.
27:1638–1652. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhou K, Zhang C, Yao H, Zhang X, Zhou Y,
Che Y and Huang Y: Knockdown of long non-coding RNA NEAT1 inhibits
glioma cell migration and invasion via modulation of SOX2 targeted
by miR-132. Mol Cancer. 17(105)2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Cao G, Tan B, Wei S, Shen W, Wang X, Chu
Y, Rong T and Gao C: Down-regulation of MBNL1-AS1 contributes to
tumorigenesis of NSCLC via sponging miR-135a-5p. Biomed
Pharmacother. 125(109856)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Hodson R: Inflammatory bowel disease.
Nature. 540(S97)2016.PubMed/NCBI View
Article : Google Scholar
|
28
|
Rosen MJ, Dhawan A and Saeed SA:
Inflammatory bowel disease in children and adolescents. JAMA
Pediatr. 169:1053–1060. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Lu JW, Rouzigu A, Teng LH and Liu WL: The
construction and comprehensive analysis of inflammation-related
ceRNA networks and tissue-infiltrating immune cells in ulcerative
progression. Biomed Res Int. 2021(6633442)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Li H, Xuan J, Zhang W, An Z, Fan X, Lu M
and Tian Y: Long non-coding RNA SNHG5 regulates ulcerative colitis
via microRNA-375/Janus kinase-2 axis. Bioengineered. 12:4150–4158.
2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Ye M, Wang C, Zhu J, Chen M, Wang S, Li M,
Lu Y, Xiao P, Zhou M, Li X and Zhou R: An NF-κB-responsive long
noncoding RNA, PINT, regulates TNF-α gene transcription by
scaffolding p65 and EZH2. FASEB J. 35(e21667)2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: lncRNA localization and function. J Cell Biol.
220(e202009045)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Bochenek G, Häsler R, El Mokhtari NE,
König IR, Loos BG, Jepsen S, Rosenstiel P, Schreiber S and Schaefer
AS: The large non-coding RNA ANRIL, which is associated with
atherosclerosis, periodontitis and several forms of cancer,
regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 22:4516–4527.
2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Guo F, Tang C, Li Y, Liu Y, Lv P, Wang W
and Mu Y: The interplay of LncRNA ANRIL and miR-181b on the
inflammation-relevant coronary artery disease through mediating
NF-κB signalling pathway. J Cell Mol Med. 22:5062–5075.
2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Wu F, Zikusoka M, Trindade A, Dassopoulos
T, Harris ML, Bayless TM, Brant SR, Chakravarti S and Kwon JH:
MicroRNAs are differentially expressed in ulcerative colitis and
alter expression of macrophage inflammatory peptide-2 alpha.
Gastroenterology. 135:1624–1635.e24. 2008.PubMed/NCBI View Article : Google Scholar
|
36
|
Wu F, Huang Y, Dong F and Kwon JH:
Ulcerative colitis-associated long noncoding RNA, BC012900,
regulates intestinal epithelial cell apoptosis. Inflamm Bowel Dis.
22:782–795. 2016.PubMed/NCBI View Article : Google Scholar
|
37
|
Pan S, Liu R, Wu X, Ma K, Luo W, Nie K,
Zhang C, Meng X, Tong T, Chen X, et al: LncRNA NEAT1 mediates
intestinal inflammation by regulating TNFRSF1B. Ann Transl Med.
9(773)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Dai W, Wang M, Wang P, Wen J, Wang J, Cha
S, Xiao X, He Y, Shu R and Bai D: lncRNA NEAT1 ameliorates
LPS-induced inflammation in MG63 cells by activating autophagy and
suppressing the NLRP3. Int J Mol Med. 47:607–620. 2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Chen C, Zhang H, Ge M, Ye J, Li R and Wang
D: LncRNA NEAT1 acts as a key regulator of cell apoptosis and
inflammatory response by the miR-944/TRIM37 axis in acute lung
injury. J Pharmacol Sci. 145:202–212. 2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Pang Y, Wu J, Li X, Wang C, Wang M, Liu J
and Yang G: NEAT1/miR-124/STAT3 feedback loop promotes breast
cancer progression. Int J Oncol. 55:745–754. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Bayraktar R, Pichler M, Kanlikilicer P,
Ivan C, Bayraktar E, Kahraman N, Aslan B, Oguztuzun S, Ulasli M,
Arslan A, et al: MicroRNA 603 acts as a tumor suppressor and
inhibits triple-negative breast cancer tumorigenesis by targeting
elongation factor 2 kinase. Oncotarget. 8:11641–11658.
2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Lu J, Wang L, Chen W, Wang Y, Zhen S, Chen
H, Cheng J, Zhou Y, Li X and Zhao L: miR-603 targeted hexokinase-2
to inhibit the malignancy of ovarian cancer cells. Arch Biochem
Biophys. 661:1–9. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Shamsi F, Xue R, Huang TL, Lundh M, Liu Y,
Leiria LO, Lynes MD, Kempf E, Wang CH, Sugimoto S, et al: FGF6 and
FGF9 regulate UCP1 expression independent of brown adipogenesis.
Nat Commun. 11(1421)2020.PubMed/NCBI View Article : Google Scholar
|
44
|
Li YH, Chen TM, Huang BM, Yang SH, Wu CC,
Lin YM, Chuang JI, Tsai SJ and Sun HS: FGF9 is a downstream target
of SRY and sufficient to determine male sex fate in ex vivo XX
gonad culture. Biol Reprod. 103:1300–1313. 2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Deng B, Lv W, Duan W, Liu Y, Li Z, Song X,
Cui C, Qi X, Wang X and Li C: FGF9 modulates Schwann cell
myelination in developing nerves and induces a pro-inflammatory
environment during injury. J Cell Biochem. 119:8643–8658.
2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Yin Y and Ornitz DM: FGF9 and FGF10
activate distinct signaling pathways to direct lung epithelial
specification and branching. Sci Signal.
13(eaay4353)2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Tang L, Wu M, Lu S, Zhang H, Shen Y, Shen
C, Liang H, Ge H, Ding X and Wang Z: Fgf9 negatively regulates bone
mass by inhibiting osteogenesis and promoting osteoclastogenesis
Via MAPK and PI3K/AKT signaling. J Bone Miner Res. 36:779–791.
2021.PubMed/NCBI View Article : Google Scholar
|