1
|
Reed GW, Rossi JE and Cannon CP: Acute
myocardial infarction. Lancet. 389:197–210. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Castro-Dominguez Y, Dharmarajan K and
McNamara RL: Predicting death after acute myocardial infarction.
Trends Cardiovasc Med. 28:102–109. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Shibata T, Kawakami S, Noguchi T, Tanaka
T, Asaumi Y, Kanaya T, Nagai T, Nakao K, Fujino M, Nagatsuka K, et
al: Prevalence, clinical features, and prognosis of acute
myocardial infarction attributable to coronary artery embolism.
Circulation. 132:241–250. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Henry P, Lamhaut L, Delmas C and Belle L:
Can we still die from acute myocardial infarction in 2020? Reflex
mobile cardiac assistance unit or local team for ECMO implantation?
Arch Cardiovasc Dis. 112:733–737. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Abdelaziz HK, Patel B, Chalil S and
Choudhury T: COVID-19 pandemic and acute myocardial infarction:
Management protocol from a british cardiac centre. Crit Pathw
Cardiol. 19:55–57. 2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Johansson S, Rosengren A, Young K and
Jennings E: Mortality and morbidity trends after the first year in
survivors of acute myocardial infarction: A systematic review. BMC
Cardiovasc Disord. 17(53)2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Liu Z, Ma C, Gu J and Yu M: Potential
biomarkers of acute myocardial infarction based on weighted gene
co-expression network analysis. Biomed Eng Online.
18(9)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Bavia L, Lidani KCF, Andrade FA, Sobrinho
MIAH, Nisihara RM and de Messias-Reason IJ: Complement activation
in acute myocardial infarction: An early marker of inflammation and
tissue injury? Immunol Lett. 200:18–25. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Xue S, Zhu W, Liu D, Su Z, Zhang L, Chang
Q and Li P: Circulating miR-26a-1, miR-146a and miR-199a-1 are
potential candidate biomarkers for acute myocardial infarction. Mol
Med. 25(18)2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C
and Li P: Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are
novel biomarkers for diagnosis of acute myocardial infarction.
Front Physiol. 10(123)2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Bukauskas T, Mickus R, Cereskevicius D and
Macas A: Value of serum miR-23a, miR-30d, and miR-146a biomarkers
in ST-Elevation myocardial infarction. Med Sci Monit. 25:3925–3932.
2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Suresh R, Li X, Chiriac A, Goel K, Terzic
A, Perez-Terzic C and Nelson TJ: Transcriptome from circulating
cells suggests dysregulated pathways associated with long-term
recurrent events following first-time myocardial infarction. J Mol
Cell Cardiol. 74:13–21. 2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Gao Y, Qi GX, Guo L and Sun YX:
Bioinformatics analyses of differentially expressed genes
associated with acute myocardial infarction. Cardiovasc Ther.
34:67–75. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Xiang S, Huang Z, Wang T, Han Z, Yu CY, Ni
D, Huang K and Zhang J: Condition-specific Gene Co-Expression
network mining identifies key pathways and regulators in the brain
tissue of Alzheimer's disease patients. BMC Med Genomics. 11 (Suppl
6)(S115)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Ma C, Lv Q, Teng S, Yu Y, Niu K and Yi C:
Identifying key genes in rheumatoid arthritis by weighted gene
Co-Expression network analysis. Int J Rheum Dis. 20:971–979.
2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Saris CG, Horvath S, van Vught PW, van Es
MA, Blauw HM, Fuller TF, Langfelder P, DeYoung J, Wokke JH, Veldink
JH, et al: Weighted gene co-expression network analysis of the
peripheral blood from amyotrophic lateral sclerosis patients. BMC
Genomics. 10(405)2009.PubMed/NCBI View Article : Google Scholar
|
17
|
Azuaje F, Zhang L, Jeanty C, Puhl SL,
Rodius S and Wagner DR: Analysis of a gene co-expression network
establishes robust association between Col5a2 and ischemic heart
disease. BMC Med Genomics. 6(13)2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Malki K, Tosto MG, Jumabhoy I, Lourdusamy
A, Sluyter F, Craig I, Uher R, McGuffin P and Schalkwyk LC:
Integrative mouse and human mRNA studies using WGCNA nominates
novel candidate genes involved in the pathogenesis of major
depressive disorder. Pharmacogenomics. 14:1979–1990.
2013.PubMed/NCBI View Article : Google Scholar
|
19
|
Udyavar AR, Hoeksema MD, Clark JE, Zou Y,
Tang Z, Li Z, Li M, Chen H, Statnikov A, Shyr Y, et al:
Co-expression network analysis identifies spleen tyrosine kinase
(SYK) as a candidate oncogenic driver in a subset of small-cell
lung cancer. BMC Syst Biol. 7 (Suppl 5)(S1)2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhao H, Cai W, Su S, Zhi D, Lu J and Liu
S: Screening genes crucial for pediatric pilocytic astrocytoma
using weighted gene coexpression network analysis combined with
methylation data analysis. Cancer Gene Ther. 21:448–455.
2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhang S, Liu W, Liu X, Qi J and Deng C:
Biomarkers identification for acute myocardial infarction detection
via weighted gene Co-expression network analysis. Medicine
(Baltimore). 96(e8375)2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Aya K, Suzuki G, Suwabe K, Hobo T,
Takahashi H, Shiono K, Yano K, Tsutsumi N, Nakazono M, Nagamura Y,
et al: Comprehensive network analysis of anther-expressed genes in
rice by the combination of 33 laser microdissection and 143
spatiotemporal microarrays. PLoS One. 6(e26162)2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Obayashi T and Kinoshita K: Rank of
correlation coefficient as a comparable measure for biological
significance of gene coexpression. DNA Res. 16:249–260.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Mutwil M, Ruprecht C, Giorgi FM, Bringmann
M, Usadel B and Persson S: Transcriptional wiring of cell
wall-related genes in arabidopsis. Mol Plant. 2:1015–1024.
2009.PubMed/NCBI View Article : Google Scholar
|
25
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000.PubMed/NCBI View
Article : Google Scholar
|
26
|
Gene Ontology Consortium. The gene
ontology resource: Enriching a GOld mine. Nucleic Acids Res.
49:D325–D334. 2021.PubMed/NCBI View Article : Google Scholar
|
27
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000.PubMed/NCBI View Article : Google Scholar
|
28
|
Kanehisa M: Toward understanding the
origin and evolution of cellular organisms. Protein Sci.
28:1947–1951. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Kanehisa M, Furumichi M, Sato Y,
Ishiguro-Watanabe M and Tanabe M: KEGG: Integrating viruses and
cellular organisms. Nucleic Acids Res. 49:D545–D551.
2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong
S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for
annotation and identification of enriched pathways and diseases.
Nucleic Acids Res. 39:W316–W322. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
32
|
Shah M, Patel B, Tripathi B, Agarwal M,
Patnaik S, Ram P, Patil S, Shin J and Jorde UP: Hospital mortality
and thirty day readmission among patients with non-acute myocardial
infarction related cardiogenic shock. Int J Cardiol. 270:60–67.
2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen Y, Song Y, Xu JJ, Tang XF, Wang HH,
Jiang P, Jiang L, Liu R, Zhao XY, Gao LJ, et al: Relationship
between thrombolysis in myocardial infarction risk index and the
severity of coronary artery lesions and long-term outcome in acute
myocardial infarction patients undergoing percutaneous coronary
intervention. Zhonghua Xin Xue Guan Bing Za Zhi. 46:874–881.
2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
34
|
Khodayari S, Khodayari H, Amiri AZ, Eslami
M, Farhud D, Hescheler J and Nayernia K: Inflammatory
microenvironment of acute myocardial infarction prevents
regeneration of heart with stem cells therapy. Cell Physiol
Biochem. 53:887–909. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Kiliszek M, Szpakowicz A, Franaszczyk M,
Pepinski W, Waszkiewicz E, Skawronska M, Ploski R,
Niemcunowicz-Janica A, Budnik M, Poludniewska D, et al: The 9p21
Polymorphism is linked with atrial fibrillation during acute phase
of ST-segment elevation myocardial infarction. Heart Vessels.
31:1590–1594. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu
A, Bai M and Zhang Z: Weighted gene co-expression network analysis
identifies critical genes in the development of heart failure after
acute myocardial infarction. Front Genet. 10(1214)2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Choobdar S, Ahsen ME, Crawford J, Tomasoni
M, Fang T, Lamparter D, Lin J, Hescott B, Hu X, Mercer J, et al:
Assessment of network module identification across complex
diseases. Nat Methods. 16:843–852. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhou Q, Ren J, Hou J, Wang G, Ju L, Xiao Y
and Gong Y: Co-expression network analysis identified candidate
biomarkers in association with progression and prognosis of breast
cancer. J Cancer Res Clin Oncol. 145:2383–2396. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Tang J, Kong D, Cui Q, Wang K, Zhang D,
Gong Y and Wu G: Prognostic genes of breast cancer identified by
gene Co-expression network analysis. Front Oncol.
8(374)2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Penning TM: AKR1C3 (type 5
17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles
in malignancy and endocrine disorders. Mol Cell Endocrinol.
489:82–91. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Yue W, Youjun W, Kun X, Yingjie Z, Gang L,
Shiyan X and Fuquan W: RPS24c isoform facilitates tumor
angiogenesis via promoting the stability of MVIH in colorectal
cancer. Curr Mol Med. 20:388–395. 2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Shankar H, Garcia A, Prabhakar J, Kim S
and Kunapuli SP: P2Y12 receptor-mediated potentiation of
thrombin-induced thromboxane A2 generation in platelets occurs
through regulation of Erk1/2 activation. J Thromb Haemost.
4:638–647. 2006.PubMed/NCBI View Article : Google Scholar
|
43
|
Hassani Idrissi H, Hmimech W, El Khorb N,
Akoudad H, Habbal R and Nadifi S: Does i-T744C P2Y12 polymorphism
modulate clopidogrel response among moroccan acute coronary
syndromes patients? Genet Res Int. 2017(9532471)2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Tingting L, Xiangdong L, Heyu M, Lili C
and Fanbo M: ACSL1 affects Triglyceride Levels through the PPARγ
pathway. Int J Med Sci. 17:720–727. 2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Jeong HY, Park SY, Kim HJ, Moon S, Lee S,
Lee SH and Kim SH: B3GNT5 is a novel marker correlated with
stem-like phenotype and poor clinical outcome in human gliomas. CNS
Neurosci Ther. 26:1147–1154. 2020.PubMed/NCBI View Article : Google Scholar
|