1
|
Hao D, Gu X, Xiao P and Peng Y: Chemical
and biological research of Clematis medicinal resources. Chin Sci
Bull. 58:1120–1129. 2013.
|
2
|
Chledzik S, Strawa J, Matuszek K and
Nazaruk J: Pharmacological effects of scutellarin, an active
component of genus scutellaria and erigeron: A systematic review.
Am J Chin Med. 46:319–337. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Lee SW, Chung WT, Choi SM, Kim KT, Yoo KS
and Yoo YH: Clematis mandshurica protected to apoptosis of
rat chondrocytes. J Ethnopharmacol. 101:294–298. 2005.PubMed/NCBI View Article : Google Scholar
|
4
|
Jo MJ, Lee JR, Cho IJ, Kim YW and Kim SC:
Roots of Erigeron annuus attenuate acute inflammation as
mediated with the inhibition of NF-κ B-associated nitric oxide and
prostaglandin E2 production. Evid Based Complement Alternat Med.
2013(297427)2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Lee TK, Park JH, Kim B, Park YE, Lee JC,
Ahn JH, Park CW, Noh Y, Lee JW, Kim SS, et al: YES-10, a
combination of extracts from Clematis mandshurica RUPR. and
Erigeron annuus (L.) PERS., prevents ischemic brain injury
in a gerbil model of transient forebrain ischemia. Plants (Basel).
9(154)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Gu J, Su S, Guo J, Zhu Y, Zhao M and Duan
JA: Anti-inflammatory and anti-apoptotic effects of the combination
of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral
ischaemia via TLR4/MyD88/MAPK/NF-kappaB signalling pathway in MCAO
rats. J Pharm Pharmacol. 70:268–277. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Gu J, Chen J, Yang N, Hou X, Wang J, Tan
X, Feng L and Jia X: Combination of Ligusticum chuanxiong and Radix
Paeoniae ameliorate focal cerebral ischemic in MCAO rats via
endoplasmic reticulum stress-dependent apoptotic signaling pathway.
J Ethnopharmacol. 187:313–324. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Kirino T and Sano K: Selective
vulnerability in the gerbil hippocampus following transient
ischemia. Acta Neuropathol. 62:201–208. 1984.PubMed/NCBI View Article : Google Scholar
|
9
|
Kirino T: Delayed neuronal death in the
gerbil hippocampus following ischemia. Brain Res. 239:57–69.
1982.PubMed/NCBI View Article : Google Scholar
|
10
|
Lee JC and Won MH: Neuroprotection of
antioxidant enzymes against transient global cerebral ischemia in
gerbils. Anat Cell Biol. 47:149–156. 2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Mdzinarishvili A, Sumbria R, Lang D and
Klein J: Ginkgo extract EGb761 confers neuroprotection by reduction
of glutamate release in ischemic brain. J Pharm Pharm Sci.
15:94–102. 2012.PubMed/NCBI View Article : Google Scholar
|
12
|
Shirley R, Ord EN and Work LM: Oxidative
stress and the use of antioxidants in stroke. Antioxidants (Basel).
3:472–501. 2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Yoo KY, Kim IH, Cho JH, Ahn JH, Park JH,
Lee JC, Tae HJ, Kim DW, Kim JD, Hong S, et al: Neuroprotection of
Chrysanthemum indicum Linne against cerebral ischemia/reperfusion
injury by anti-inflammatory effect in gerbils. Neural Regen Res.
11:270–277. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu
W, Bennett MVL and Chen J: Oxidative stress and DNA damage after
cerebral ischemia: Potential therapeutic targets to repair the
genome and improve stroke recovery. Neuropharmacology. 134:208–217.
2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Chan PH: Reactive oxygen radicals in
signaling and damage in the ischemic brain. J Cereb Blood Flow
Metab. 21:2–14. 2001.PubMed/NCBI View Article : Google Scholar
|
16
|
Lee JC, Kim IH, Park JH, Ahn JH, Cho JH,
Cho GS, Tae HJ, Chen BH, Yan BC, Yoo KY, et al: Ischemic
preconditioning protects hippocampal pyramidal neurons from
transient ischemic injury via the attenuation of oxidative damage
through upregulating heme oxygenase-1. Free Radic Biol Med.
79:78–90. 2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Ya BL, Li HF, Wang HY, Wu F, Xin Q, Cheng
HJ, Li WJ, Lin N, Ba ZH, Zhang RJ, et al: 5-HMF attenuates striatum
oxidative damage via Nrf2/ARE signaling pathway following transient
global cerebral ischemia. Cell Stress Chaperones. 22:55–65.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Park JH, Lee TK, Yan BC, Shin BN, Ahn JH,
Kim IH, Cho JH, Lee JC, Hwang IK, Kim JD, et al: Pretreated
Glehnia littoralis extract prevents neuronal death following
transient global cerebral ischemia through increases of superoxide
dismutase 1 and brain-derived neurotrophic factor expressions in
the Gerbil Hippocampal cornu ammonis 1 area. Chin Med J (Engl).
130:1796–1803. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Kim IH, Lee TK, Cho JH, Lee JC, Park JH,
Ahn JH, Shin BN, Chen BH, Tae HJ, Kim YH, et al: Pretreatment with
Chrysanthemum indicum Linne extract protects pyramidal neurons from
transient cerebral ischemia via increasing antioxidants in the
gerbil hippocampal CA1 region. Mol Med Rep. 16:133–142.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Li L, Li L, Chen C, Yang J, Li J, Hu N, Li
Y, Zhang D, Guo T, Liu X and Yang W: Scutellarin's cardiovascular
endothelium protective mechanism: Important role of PKG-Iα. PLoS
One. 10(e0139570)2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Yang B, Zhang Z, Yang Z, Ruan J, Luo L,
Long F and Tang D: Chanling Gao attenuates bone cancer pain in rats
by the IKKβ/NF-κB signaling pathway. Front Pharmacol.
11(525)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Jiang NH, Zhang GH, Zhang JJ, Shu LP,
Zhang W, Long GQ, Liu T, Meng ZG, Chen JW and Yang SC: Analysis of
the transcriptome of Erigeron breviscapus uncovers putative
scutellarin and chlorogenic acids biosynthetic genes and genetic
markers. PLoS One. 9(e100357)2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Chen S, Li M, Li Y, Hu H, Li Y, Huang Y,
Zheng L, Lu Y, Hu J, Lan Y, et al: A UPLC-ESI-MS/MS method for
simultaneous quantitation of chlorogenic acid, scutellarin, and
scutellarein in rat plasma: Application to a comparative
pharmacokinetic study in sham-operated and MCAO rats after oral
administration of Erigeron breviscapus extract. Molecules.
23(1808)2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Lee JY, Park JY, Kim DH, Kim HD, Ji YJ and
Seo KH: Erigeron annuus protects PC12 neuronal cells from
oxidative stress induced by ROS-mediated apoptosis. Evid Based
Complement Alternat Med. 2020(3945194)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Sato Y, Itagaki S, Kurokawa T, Ogura J,
Kobayashi M, Hirano T, Sugawara M and Iseki K: In vitro and in vivo
antioxidant properties of chlorogenic acid and caffeic acid. Int J
Pharm. 403:136–138. 2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Szwajgier D, Borowiec K and Pustelniak K:
The neuroprotective effects of phenolic acids: Molecular mechanism
of action. Nutrients. 9(477)2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q,
Zheng C and Zheng Q: Neuroprotective effect of scutellarin on
ischemic cerebral injury by down-regulating the expression of
angiotensin-converting enzyme and AT1 receptor. PLoS One.
11(e0146197)2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Liu D, Wang H, Zhang Y and Zhang Z:
Protective effects of chlorogenic acid on Cerebral
ischemia/reperfusion injury rats by regulating oxidative
stress-related Nrf2 pathway. Drug Des Devel Ther. 14:51–60.
2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Lee TK, Kim H, Song M, Lee JC, Park JH,
Ahn JH, Yang GE, Kim H, Ohk TG, Shin MC, et al: Time-course pattern
of neuronal loss and gliosis in gerbil hippocampi following mild,
severe, or lethal transient global cerebral ischemia. Neural Regen
Res. 14:1394–1403. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Halloran ST, Mauck KE, Fleischer SJ and
Tumlinson JH: Volatiles from intact and Lygus-damaged Erigeron
annuus (L.) Pers. are highly attractive to ovipositing Lygus
and its parasitoid Peristenus relictus Ruthe. J Chem Ecol.
39:1115–1128. 2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Park JH, Lee TK, Ahn JH, Shin BN, Cho JH,
Kim IH, Lee JC, Kim JD, Lee YJ, Kang IJ, et al: Pre-treated
Populus tomentiglandulosa extract inhibits neuronal loss and
alleviates gliosis in the gerbil hippocampal CA1 area induced by
transient global cerebral ischemia. Anat Cell Biol. 50:284–292.
2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Carpenter JW: Exotic Animal
Formulary-eBook, 4th edition. Elsevier Health Sciences, 2012.
|
33
|
Engel T, Schindler CK, Sanz-Rodriguez A,
Conroy RM, Meller R, Simon RP and Henshall DC: Expression of
neurogenesis genes in human temporal lobe epilepsy with hippocampal
sclerosis. Int J Physiol Pathophysiol Pharmacol. 3:38–47.
2011.PubMed/NCBI
|
34
|
Zhao H, Li Z, Wang Y and Zhang Q:
Hippocampal expression of synaptic structural proteins and
phosphorylated cAMP response element-binding protein in a rat model
of vascular dementia induced by chronic cerebral hypoperfusion.
Neural Regen Res. 7:821–826. 2012.PubMed/NCBI View Article : Google Scholar
|
35
|
Lee TK, Park Y, Kim B, Lee JC, Shin MC,
Ohk TG, Park CW, Cho JH, Park JH, Lee CH, et al: Long-term
alternating fasting increases interleukin-13 in the Gerbil
Hippocampus, but does not protect BBB and Pyramidal Neurons from
ischemia-reperfusion injury. Neurochem Res. 45:2352–2363.
2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Kim H, Ahn JH, Song M, Kim DW, Lee TK, Lee
JC, Kim YM, Kim JD, Cho JH, Hwang IK, et al: Pretreated fucoidan
confers neuroprotection against transient global cerebral ischemic
injury in the gerbil hippocampal CA1 area via reducing of glial
cell activation and oxidative stress. Biomed Pharmacother.
109:1718–1727. 2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Ahn JH, Noh Y, Shin BN, Kim SS, Park JH,
Lee TK, Song M, Kim H, Lee JC, Yong J, et al: Intermittent fasting
increases SOD2 and catalase immunoreactivities in the hippocampus
but does not protect from neuronal death following transient
ischemia in gerbils. Mol Med Rep. 18:4802–4812. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Ahn JH, Shin MC, Kim DW, Kim H, Song M,
Lee TK, Lee JC, Kim H, Cho JH, Kim YM, et al: Antioxidant
properties of fucoidan alleviate acceleration and exacerbation of
hippocampal neuronal death following transient global cerebral
ischemia in high-fat diet-induced obese gerbils. Int J Mol Sci.
20(554)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Kuchinka J, Nowak E, Szczurkowski A and
Kuder T: Arteries supplying the base of the brain in the Mongolian
gerbil (Meriones unguiculatus). Pol J Vet Sci. 11:295–299.
2008.PubMed/NCBI
|
40
|
Martínez NS, Machado JM, Pérez-Saad H,
Coro-Antich RM, Berlanga-Acosta JA, Salgueiro SR, Illera GG, Alba
JS and del Barco DG: Global brain ischemia in Mongolian gerbils:
Assessing the level of anastomosis in the cerebral circle of
Willis. Acta Neurobiol Exp (Wars). 72:377–384. 2012.PubMed/NCBI
|
41
|
Ahn JH, Song M, Kim H, Lee TK, Park CW,
Park YE, Lee JC, Cho JH, Kim YM, Hwang IK, et al: Differential
regional infarction, neuronal loss and gliosis in the gerbil
cerebral hemisphere following 30 min of unilateral common carotid
artery occlusion. Metab Brain Dis. 34:223–233. 2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Traystman RJ: Animal models of focal and
global cerebral ischemia. ILAR J. 44:85–95. 2003.PubMed/NCBI View Article : Google Scholar
|
43
|
Lee JC, Park JH, Ahn JH, Kim IH, Cho JH,
Choi JH, Yoo KY, Lee CH, Hwang IK, Cho JH, et al: New GABAergic
neurogenesis in the hippocampal CA1 region of a gerbil model of
long-term survival after transient cerebral ischemic injury. Brain
Pathol. 26:581–592. 2016.PubMed/NCBI View Article : Google Scholar
|
44
|
Kim H, Park JH, Shin MC, Cho JH, Lee TK,
Kim H, Song M, Park CW, Park YE, Lee JC, et al: Fate of astrocytes
in the gerbil hippocampus after transient global cerebral ischemia.
Int J Mol Sci. 20(845)2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Qian L, Shen M, Tang H, Tang Y, Zhang L,
Fu Y, Shi Q and Li NG: Synthesis and protective effect of
scutellarein on focal cerebral ischemia/reperfusion in rats.
Molecules. 17:10667–10674. 2012.PubMed/NCBI View Article : Google Scholar
|
46
|
Wu J, Chen Y, Yu S, Li L, Zhao X, Li Q,
Zhao J and Zhao Y: Neuroprotective effects of sulfiredoxin-1 during
cerebral ischemia/reperfusion oxidative stress injury in rats.
Brain Res Bull. 132:99–108. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Xue F, Huang JW, Ding PY, Zang HG, Kou ZJ,
Li T, Fan J, Peng ZW and Yan WJ: Nrf2/antioxidant defense pathway
is involved in the neuroprotective effects of Sirt1 against focal
cerebral ischemia in rats after hyperbaric oxygen preconditioning.
Behav Brain Res. 309:1–8. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Bazmandegan G, Boroushaki MT, Shamsizadeh
A, Ayoobi F, Hakimizadeh E and Allahtavakoli M: Brown propolis
attenuates cerebral ischemia-induced oxidative damage via affecting
antioxidant enzyme system in mice. Biomed Pharmacother. 85:503–510.
2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Fukai T and Ushio-Fukai M: Superoxide
dismutases: Role in redox signaling, vascular function, and
diseases. Antioxid Redox Signal. 15:1583–1606. 2011.PubMed/NCBI View Article : Google Scholar
|
50
|
Csala M, Kardon T, Legeza B, Lizák B,
Mandl J, Margittai É, Puskás F, Száraz P, Szelényi P and Bánhegyi
G: On the role of 4-hydroxynonenal in health and disease. Biochim
Biophys Acta. 1852:826–838. 2015.PubMed/NCBI View Article : Google Scholar
|
51
|
Yan BC, Park JH, Ahn JH, Kim IH, Lee JC,
Yoo KY, Choi JH, Hwang IK, Cho JH, Kwon YG, et al: Effects of
high-fat diet on neuronal damage, gliosis, inflammatory process and
oxidative stress in the hippocampus induced by transient cerebral
ischemia. Neurochem Res. 39:2465–2478. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Peshavariya HM, Dusting GJ and Selemidis
S: Analysis of dihydroethidium fluorescence for the detection of
intracellular and extracellular superoxide produced by NADPH
oxidase. Free Radic Res. 41:699–712. 2007.PubMed/NCBI View Article : Google Scholar
|
53
|
Dan Dunn J, Alvarez LA, Zhang X and
Soldati T: Reactive oxygen species and mitochondria: A nexus of
cellular homeostasis. Redox Biol. 6:472–485. 2015.PubMed/NCBI View Article : Google Scholar
|
54
|
Vara D and Pula G: Reactive oxygen
species: Physiological roles in the regulation of vascular cells.
Curr Mol Med. 14:1103–1125. 2014.PubMed/NCBI View Article : Google Scholar
|
55
|
Röhnert P, Schröder UH, Ziabreva I, Täger
M, Reymann KG and Striggow F: Insufficient endogenous redox buffer
capacity may underlie neuronal vulnerability to cerebral ischemia
and reperfusion. J Neurosci Res. 90:193–202. 2012.PubMed/NCBI View Article : Google Scholar
|