1
|
Addley J and Mitchell RM: Advances in the
investigation of obstructive jaundice. Curr Gastroenterol Rep.
14:511–519. 2012.PubMed/NCBI View Article : Google Scholar
|
2
|
Mosler P: Diagnosis and management of
acute cholangitis. Curr Gastroenterol Rep. 13:166–172.
2011.PubMed/NCBI View Article : Google Scholar
|
3
|
Lazaridis KN and LaRusso NF: The
cholangiopathies. Mayo Clin Proc. 90:791–800. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
O'Neill S, Ross JA, Wigmore SJ and
Harrison EM: The role of heat shock protein 90 in modulating
ischemia-reperfusion injury in the kidney. Expert Opin Investig
Drugs. 21:1535–1548. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Tukaj S and Wegrzyn G: Anti-Hsp90 therapy
in autoimmune and inflammatory diseases: A review of preclinical
studies. Cell Stress Chaperones. 21:213–218. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Schopf FH, Biebl MM and Buchner J: The
HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 18:345–360.
2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Wu J, Liu T, Rios Z, Mei Q, Lin X and Cao
S: Heat shock proteins and cancer. Trends Pharmacol Sci.
38:226–256. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Usmani SZ, Bona RD, Chiosis G and Li Z:
The anti-myeloma activity of a novel purine scaffold HSP90
inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J
Hematol Oncol. 3(40)2010.PubMed/NCBI View Article : Google Scholar
|
9
|
Haque A, Alam Q, Alam MZ, Azhar EI, Sait
KH, Anfinan N, Mushtaq G, Kamal MA and Rasool M: Current
understanding of HSP90 as a novel therapeutic target: An emerging
approach for the treatment of cancer. Curr Pharm Des. 22:2947–2959.
2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Fuhrmann-Stroissnigg H, Ling YY, Zhao J,
McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL,
Dorronsoro A, et al: Identification of HSP90 inhibitors as a novel
class of senolytics. Nat Commun. 8(422)2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Ambade A, Catalano D, Lim A and Mandrekar
P: Inhibition of heat shock protein (molecular weight 90 kDa)
attenuates proinflammatory cytokines and prevents
lipopolysaccharide-induced liver injury in mice. Hepatology.
55:1585–1595. 2012.PubMed/NCBI View Article : Google Scholar
|
12
|
Ambade A, Catalano D, Lim A, Kopoyan A,
Shaffer SA and Mandrekar P: Inhibition of heat shock protein 90
alleviates steatosis and macrophage activation in murine alcoholic
liver injury. J Hepatol. 61:903–911. 2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Medzhitov R: Toll-like receptors and
innate immunity. Nat Rev Immunol. 1:135–145. 2001.PubMed/NCBI View
Article : Google Scholar
|
14
|
Khalafalla MG, Woods LT, Camden JM, Khan
AA, Limesand KH, Petris MJ, Erb L and Weisman GA: P2X7 receptor
antagonism prevents IL-1β release from salivary epithelial cells
and reduces inflammation in a mouse model of autoimmune
exocrinopathy. J Biol Chem. 292:16626–16637. 2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Teratani T, Tomita K, Suzuki T, Furuhashi
H, Irie R, Hida S, Okada Y, Kurihara C, Ebinuma H, Nakamoto N, et
al: Free cholesterol accumulation in liver sinusoidal endothelial
cells exacerbates acetaminophen hepatotoxicity via TLR9 signaling.
J Hepatol. 67:780–790. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu B, Yang Y, Qiu Z, Staron M, Hong F, Li
Y, Wu S, Li Y, Hao B, Bona R, et al: Folding of Toll-like receptors
by the HSP90 paralogue gp96 requires a substrate-specific
cochaperone. Nat Commun. 1(79)2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Wang J, Grishin AV and Ford HR:
Experimental anti-inflammatory drug semapimod inhibits TLR
signaling by targeting the TLR chaperone gp96. J Immunol.
196:5130–5137. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Yu J, Zhang W, Qian H, Tang H, Lin W and
Lu B: SOCS1 regulates hepatic regenerative response and provides
prognostic makers for acute obstructive cholangitis. Sci Rep.
7(9482)2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Yang J and Lu B: Establishment of a novel
rat model of severe acute cholangitis. Iran J Basic Med Sci.
18:1124–1129. 2015.PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Braet F, De Zanger R, Sasaoki T, Baekeland
M, Janssens P, Smedsrød B and Wisse E: Assessment of a method of
isolation, purification, and cultivation of rat liver sinusoidal
endothelial cells. Lab Invest. 70:944–952. 1994.PubMed/NCBI
|
22
|
Navaneethan U, Jayanthi V and Mohan P:
Pathogenesis of cholangitis in obstructive jaundice-revisited.
Minerva Gastroenterol Dietol. 57:97–104. 2011.PubMed/NCBI
|
23
|
Mellatyar H, Talaei S,
Pilehvar-Soltanahmadi Y, Barzegar A, Akbarzadeh A, Shahabi A,
Barekati-Mowahed M and Zarghami N: Targeted cancer therapy through
17-DMAG as an Hsp90 inhibitor: Overview and current state of the
art. Biomed Pharmacother. 102:608–617. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Holzbeierlein JM, Windsperger A and
Vielhauer G: Hsp90: A drug target? Curr Oncol Rep. 12:95–101.
2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Kim HR, Kang HS and Kim HD: Geldanamycin
induces heat shock protein expression through activation of HSF1 in
K562 erythroleukemic cells. IUBMB Life. 48:429–433. 1999.PubMed/NCBI View Article : Google Scholar
|
26
|
Wang YL, Shen HH, Cheng PY, Chu YJ, Hwang
HR, Lam KK and Lee YM: 17-DMAG, an HSP90 inhibitor, ameliorates
multiple organ dysfunction syndrome via induction of HSP70 in
endotoxemic rats. PLoS One. 11(e0155583)2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Ge J, Normant E, Porter JR, Ali JA,
Dembski MS, Gao Y, Georges AT, Grenier L, Pak RH, Patterson J, et
al: Design, synthesis, and biological evaluation of hydroquinone
derivatives of 17-amino-17-demethoxygeldanamycin as potent,
water-soluble inhibitors of Hsp90. J Med Chem. 49:4606–4615.
2006.PubMed/NCBI View Article : Google Scholar
|
28
|
Vaughan AT, Betti CJ and Villalobos MJ:
Surviving apoptosis. Apoptosis. 7:173–177. 2002.PubMed/NCBI View Article : Google Scholar
|
29
|
Li M, Cai SY and Boyer JL: Mechanisms of
bile acid mediated inflammation in the liver. Mol Aspects Med.
56:45–53. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Tanasescu C: Correlation between
cholestasis and infection. Rom J Gastroenterol. 13:23–27.
2004.PubMed/NCBI
|
31
|
Luan J and Ju D: Inflammasome: A
double-edged sword in liver diseases. Front Immunol.
9(2201)2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Shetty S, Lalor PF and Adams DH: Liver
sinusoidal endothelial cells-gatekeepers of hepatic immunity. Nat
Rev Gastroenterol Hepatol. 15:555–567. 2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Cai J, Zhang XJ and Li H: The role of
innate immune cells in nonalcoholic steatohepatitis. Hepatology.
70:1026–1037. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Roh YS, Zhang B, Loomba R and Seki E: TLR2
and TLR9 contribute to alcohol-mediated liver injury through
induction of CXCL1 and neutrophil infiltration. Am J Physiol
Gastrointest Liver Physiol. 309:G30–G41. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Madrigal-Matute J, Fernandez-Garcia CE,
Gomez-Guerrero C, Lopez-Franco O, Muñoz-Garcia B, Egido J,
Blanco-Colio LM and Martin-Ventura JL: HSP90 inhibition by 17-DMAG
attenuates oxidative stress in experimental atherosclerosis.
Cardiovasc Res. 95:116–123. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Qi J, Liu Y, Yang P, Chen T, Liu XZ, Yin
Y, Zhang J and Wang F: Heat shock protein 90 inhibition by
17-dimethylaminoethylamino-17-demethoxygeldanamycin protects
blood-brain barrier integrity in cerebral ischemic stroke. Am J
Transl Res. 7:1826–1837. 2015.PubMed/NCBI
|
37
|
Leung AM, Redlak MJ and Miller TA: Role of
heat shock proteins in oxygen radical-induced gastric apoptosis. J
Surg Res. 193:135–144. 2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Arab JP, Cabrera D and Arrese M: Bile
acids in cholestasis and its treatment. Ann Hepatol. 16 (Suppl 1:
S3-S105):S53–S57. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Liu C, Chen J, Liu B, Yuan S, Shou D, Wen
L, Wu X and Gong W: Role of IL-18 in transplant biology. Eur
Cytokine Netw. 29:48–51. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Bortolotti P, Faure E and Kipnis E:
Inflammasomes in tissue damages and immune disorders after trauma.
Front Immunol. 9(1900)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Mende R, Vincent FB, Kandane-Rathnayake R,
Koelmeyer R, Lin E, Chang J, Hoi AY, Morand EF, Harris J and Lang
T: Analysis of serum interleukin (IL)-1β and IL-18 in systemic
lupus erythematosus. Front Immunol. 9(1250)2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Imaeda AB, Watanabe A, Sohail MA, Mahmood
S, Mohamadnejad M, Sutterwala FS, Flavell RA and Mehal WZ:
Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9
and the Nalp3 inflammasome. J Clin Invest. 119:305–314.
2009.PubMed/NCBI View Article : Google Scholar
|
43
|
Khanova E, Wu R, Wang W, Yan R, Chen Y,
French SW, Llorente C, Pan SQ, Yang Q, Li Y, et al: Pyroptosis by
caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and
patients. Hepatology. 67:1737–1753. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Kader M, Alaoui-El-Azher M, Vorhauer J,
Kode BB, Wells JZ, Stolz D, Michalopoulos G, Wells A, Scott M and
Ismail N: MyD88-dependent inflammasome activation and autophagy
inhibition contributes to Ehrlichia-induced liver injury and toxic
shock. PLoS Pathog. 13(e1006644)2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Hackstein CP, Assmus LM, Welz M, Klein S,
Schwandt T, Schultze J, Förster I, Gondorf F, Beyer M, Kroy D, et
al: Gut microbial translocation corrupts myeloid cell function to
control bacterial infection during liver cirrhosis. Gut.
66:507–518. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Mridha AR, Haczeyni F, Yeh MM, Haigh WG,
Ioannou GN, Barn V, Ajamieh H, Adams L, Hamdorf JM, Teoh NC and
Farrell GC: TLR9 is up-regulated in human and murine NASH: Pivotal
role in inflammatory recruitment and cell survival. Clin Sci
(Lond). 131:2145–2159. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Li L, Wang L, You QD and Xu XL: Heat shock
protein 90 inhibitors: An update on achievements, challenges, and
future directions. J Med Chem. 63:1798–1822. 2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Ramanathan RK, Egorin MJ, Erlichman C,
Remick SC, Ramalingam SS, Naret C, Holleran JL, TenEyck CJ, Ivy SP
and Belani CP: Phase I pharmacokinetic and pharmacodynamic study of
17-dimethylaminoethylamino-17-demethoxygeldanamycin, an inhibitor
of heat-shock protein 90, in patients with advanced solid tumors. J
Clin Oncol. 28:1520–1526. 2010.PubMed/NCBI View Article : Google Scholar
|
49
|
Lancet JE, Gojo I, Burton M, Quinn M,
Tighe SM, Kersey K, Zhong Z, Albitar MX, Bhalla K, Hannah AL and
Baer MR: Phase I study of the heat shock protein 90 inhibitor
alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice
weekly to patients with acute myeloid leukemia. Leukemia.
24:699–705. 2010.PubMed/NCBI View Article : Google Scholar
|
50
|
Kummar S, Gutierrez ME, Gardner ER, Chen
X, Figg WD, Zajac-Kaye M, Chen M, Steinberg SM, Muir CA, Yancey MA,
et al: Phase I trial of
17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a
heat shock protein inhibitor, administered twice weekly in patients
with advanced malignancies. Eur J Cancer. 46:340–347.
2010.PubMed/NCBI View Article : Google Scholar
|
51
|
Jhaveri K, Miller K, Rosen L, Schneider B,
Chap L, Hannah A, Zhong Z, Ma W, Hudis C and Modi S: A phase I
dose-escalation trial of trastuzumab and alvespimycin hydrochloride
(KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin
Cancer Res. 18:5090–5098. 2012.PubMed/NCBI View Article : Google Scholar
|