1
|
Li Y, Xu Q, Yang W, Wu T and Lu X:
Oleanolic acid reduces aerobic glycolysis-associated proliferation
by inhibiting yes-associated protein in gastric cancer cells. Gene.
712(143956)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Cavatorta O, Scida S, Miraglia C, Barchi
A, Nouvenne A, Leandro G, Meschi T, De' Angelis GL and Di Mario F:
Epidemiology of gastric cancer and risk factors. Acta Biomed.
89:82–87. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Laterza L, Scaldaferri F and Gasbarrini A:
Risk factors for gastric cancer: Is it time to discard PPIs? Gut.
68:176–177. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Venerito M, Vasapolli R, Rokkas T and
Malfertheiner P: Gastric cancer: Epidemiology, prevention, and
therapy. Helicobacter. 23 (Suppl 1)(e12518)2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Rawla P and Barsouk A: Epidemiology of
gastric cancer: Global trends, risk factors and prevention. Prz
Gastroenterol. 14:26–38. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Zang YS, Dai C, Xu X, Cai X, Wang G, Wei
J, Wu A, Sun W, Jiao S and Xu Q: Comprehensive analysis of
potential immunotherapy genomic biomarkers in 1000 Chinese patients
with cancer. Cancer Med. 8:4699–4708. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Arimoto T, Katagiri T, Oda K, Tsunoda T,
Yasugi T, Osuga Y, Yoshikawa H, Nishii O, Yano T and Nakamura Y:
Genome-wide cDNA microarray analysis of gene-expression profiles
involved in ovarian endometriosis. Int J Oncol. 22:551–560.
2003.PubMed/NCBI
|
8
|
Ricketts SL, Carter JC and Coleman WB:
Identification of three 11p11.2 candidate liver tumor suppressors
through analysis of known human genes. Mol Carcinog. 36:90–99.
2003.PubMed/NCBI View
Article : Google Scholar
|
9
|
Polyak K, Xia Y, Zweier J, Kinzler K and
Vogelstein B: A model for p53-induced apoptosis. Nature.
389:300–305. 1997.PubMed/NCBI View
Article : Google Scholar
|
10
|
Liang XQ, Cao EH, Zhang Y and Qin JF: A
P53 target gene, PIG11, contributes to chemosensitivity of cells to
arsenic trioxide. FEBS Lett. 569:94–98. 2004.PubMed/NCBI View Article : Google Scholar
|
11
|
Liang XQ, Cao EH, Zhang Y and Qin JF:
P53-induced gene 11 (PIG11) involved in arsenic trioxide-induced
apoptosis in human gastric cancer MGC-803 cells. Oncol Rep.
10:1265–1269. 2003.PubMed/NCBI
|
12
|
Xu L, Hui A, Albanis E, Arthur M, O'Byrne
S, Blaner W, Mukherjee P, Friedman S and Eng F: Human hepatic
stellate cell lines, LX-1 and LX-2: New tools for analysis of
hepatic fibrosis. Gut. 54:142–151. 2005.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu XM, Xiong XF, Song Y, Tang RJ, Liang
XQ and Cao EH: Possible roles of a tumor suppressor gene PIG11 in
hepatocarcinogenesis and As2O3-induced
apoptosis in liver cancer cells. J Gastroenterol. 44:460–469.
2009.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang Y, Liu X, Liu G, Wang X, Hu R and
Liang X: PIG11 over-expression predicts good prognosis and induces
HepG2 cell apoptosis via reactive oxygen species-dependent
mitochondrial pathway. Biomed Pharmacother. 108:435–442.
2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhu B, Tian T and Zhao M: MiR-645 promotes
proliferation and migration of non-small cell lung cancer cells by
targeting TP53I11. Eur Rev Med Pharmacol Sci. 24:6150–6156.
2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Xiao T, Xu Z, Zhang H, Geng J, Qiao Y,
Liang Y, Yu Y, Dong Q and Suo G: TP53I11 suppresses
epithelial-mesenchymal transition and metastasis of breast cancer
cells. BMB Rep. 52:379–384. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Li Z and Li Q: The latest 2010 WHO
classification of tumors of digestive system. Zhonghua Bing Li Xue
Za Zhi. 40:351–354. 2011.PubMed/NCBI(In Chinese).
|
18
|
He X, Wu W, Lin Z, Ding Y, Si J and Sun L:
Validation of the American Joint Committee on Cancer (AJCC) 8th
edition stage system for gastric cancer patients: A
population-based analysis. Gastric Cancer. 21:391–400.
2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang Y, Chen S, Tian W, Zhang Q, Jiang C,
Qian L and Liu Y: High-expression HBO1 predicts poor prognosis in
gastric cancer. Am J Clin Pathol. 152:517–526. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Camp R, Dolled-Filhart M and Rimm D:
X-tile: A new bio-informatics tool for biomarker assessment and
outcome-based cut-point optimization. Clin Cancer Res.
10:7252–7259. 2004.PubMed/NCBI View Article : Google Scholar
|
23
|
Szasz AM, Lanczky A, Nagy A, Forster S,
Hark K, Green JE, Boussioutas A, Busuttil R, Szabo A and Gyorffy B:
Cross-validation of survival associated biomarkers in gastric
cancer using transcriptomic data of 1,065 patients. Oncotarget.
7:49322–49333. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Röcken C: Molecular classification of
gastric cancer. Expert Rev Mol Diagn. 17:293–301. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Cho JY, Lim JY, Cheong JH, Park YY, Yoon
SL, Kim SM, Kim SB, Kim H, Hong SW, Park YN, et al: Gene expression
signature-based prognostic risk score in gastric cancer. Clin
Cancer Res. 17:1850–1857. 2011.PubMed/NCBI View Article : Google Scholar
|
26
|
Ooi CH, Ivanova T, Wu J, Lee M, Tan IB,
Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y, et al: Oncogenic
pathway combinations predict clinical prognosis in gastric cancer.
PLoS Genet. 5(e1000676)2009.PubMed/NCBI View Article : Google Scholar
|
27
|
Guo S, Shang M, Dong Z, Zhang J, Wang Y
and Zhao Y: The assessment of the optimal number of examined lymph
nodes and prognostic models based on lymph nodes for predicting
survival outcome in patients with stage N3b gastric cancer. Asia
Pac J Clin Oncol: Aug 6, 2020 doi: 10.1111/ajco.13358 (Epub ahead
of print).
|
28
|
Tan AC, Chan DL, Faisal W and Pavlakis N:
New drug developments in metastatic gastric cancer. Therap Adv
Gastroenterol. 11(1756284818808072)2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Menard S, Pupa SM, Campiglio M and
Tagliabue E: Biologic and therapeutic role of HER2 in cancer.
Oncogene. 22:6570–6578. 2003.PubMed/NCBI View Article : Google Scholar
|
30
|
Vasudev NS and Reynolds AR:
Anti-angiogenic therapy for cancer: Current progress, unresolved
questions and future directions. Angiogenesis. 17:471–494.
2014.PubMed/NCBI View Article : Google Scholar
|
31
|
De Vita F, Borg C, Farina G, Geva R,
Carton I, Cuku H, Wei R and Muro K: Ramucirumab and paclitaxel in
patients with gastric cancer and prior trastuzumab: Subgroup
analysis from RAINBOW study. Future Oncol. 15:2723–2731.
2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Troiani T, Napolitano S, Della Corte CM,
Martini G, Martinelli E, Morgillo F and Ciardiello F: Therapeutic
value of EGFR inhibition in CRC and NSCLC: 15 years of clinical
evidence. ESMO Open. 1(e000088)2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Catenacci DVT, Tebbutt NC, Davidenko I,
Murad AM, Al-Batran SE, Ilson DH, Tjulandin S, Gotovkin E,
Karaszewska B, Bondarenko I, et al: Rilotumumab plus epirubicin,
cisplatin, and capecitabine as first-line therapy in advanced
MET-positive gastric or gastro-oesophageal junction cancer
(RILOMET-1): A randomised, double-blind, placebo-controlled, phase
3 trial. Lancet Oncol. 18:1467–1482. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Shen X, Zhao Y, Chen X, Sun H, Liu M,
Zhang W, Jiang F and Li P: Associations of PIK3CA mutations with
clinical features and prognosis in gastric cancer. Future Oncol.
15:1873–1894. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Xu DZ, Geng QR, Tian Y, Cai MY, Fang XJ,
Zhan YQ, Zhou ZW, Li W, Chen YB, Sun XW, et al: Activated mammalian
target of rapamycin is a potential therapeutic target in gastric
cancer. BMC Cancer. 10(536)2010.PubMed/NCBI View Article : Google Scholar
|
36
|
Schoop I, Maleki S, Behrens H, Krüger S,
Haag J and Röcken C: p53 immunostaining cannot be used to predict
TP53 mutations in gastric cancer: Results from a large Central
European cohort. Hum Pathol. 105:53–66. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Cancer Genome Atlas Research Network.
Comprehensive molecular characterization of gastric adenocarcinoma.
Nature. 513:202–209. 2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Tannock I and Hickman J: Limits to
personalized cancer medicine. N Engl J Med. 375:1289–1294.
2016.PubMed/NCBI View Article : Google Scholar
|
39
|
Goussia AC, Papoudou-Bai A, Charchanti A,
Kitsoulis P, Kanavaros P, Kalef-Ezra J, Stefanou D and Agnantis NJ:
Alterations of p53 and Rb pathways are associated with high
proliferation in bladder urothelial carcinomas. Anticancer Res.
38:3985–3988. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Ma Z, Yang Y, Di S, Feng X, Liu D, Jiang
S, Hu W, Qin Z, Li Y, Lv J, et al: Pterostilbene exerts anticancer
activity on non-small-cell lung cancer via activating endoplasmic
reticulum stress. Sci Rep. 7(8091)2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Navarro-Yepes J, Burns M, Anandhan A,
Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A,
Panayiotidis MI and Franco R: Oxidative stress, redox signaling,
and autophagy: Cell death versus survival. Antioxid Redox Signal.
21:66–85. 2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Yaprak E, Kasap M, Akpinar G, Kayaalti-Y
üksek S, Sinanoğlu A, Guzel N and Demirturk Kocasarac H: The
prominent proteins expressed in healthy gingiva: A pilot
exploratory tissue proteomics study. Odontology. 106:19–28.
2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Kung CP, Khaku S, Jennis M, Zhou Y and
Murphy ME: Identification of TRIML2, a novel p53 target, that
enhances p53 SUMOylation and regulates the transactivation of
proapoptotic genes. Mol Cancer Res. 13:250–262. 2015.PubMed/NCBI View Article : Google Scholar
|
44
|
van Ginkel PR, Yan MB, Bhattacharya S,
Polans AS and Kenealey JD: Natural products induce a G
protein-mediated calcium pathway activating p53 in cancer cells.
Toxicol Appl Pharmacol. 288:453–462. 2015.PubMed/NCBI View Article : Google Scholar
|
45
|
Lin CC, Lee IT, Wu WL, Lin WN and Yang CM:
Adenosine triphosphate regulates NADPH oxidase activity leading to
hydrogen peroxide production and COX-2/PGE2 expression in A549
cells. Am J Physiol Lung Cell Mol Physiol. 303:L401–L412.
2012.PubMed/NCBI View Article : Google Scholar
|
46
|
Chiarugi P: From anchorage dependent
proliferation to survival: Lessons from redox signalling. IUBMB
Life. 60:301–307. 2008.PubMed/NCBI View
Article : Google Scholar
|
47
|
Au S, Storey B, Moore J, Tang Q, Chen Y,
Javaid S, Sarioglu A, Sullivan R, Madden M, O'Keefe R, et al:
Clusters of circulating tumor cells traverse capillary-sized
vessels. Proc Natl Acad Sci USA. 113:4947–4952. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Vlahakis A and Debnath J: The
Interconnections between autophagy and integrin-mediated cell
adhesion. J Mol Biol. 429:515–530. 2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Xiao T, Xu Z, Zhou Y, Zhang H, Geng J,
Liang Y, Qiao H and Suo G: Loss of TP53I11 enhances the
extracellular Matrix-independent survival by promoting activation
of AMPK. IUBMB Life. 71:183–191. 2019.PubMed/NCBI View Article : Google Scholar
|
50
|
Otterbein LR, Graceffa P and Dominguez R:
The crystal structure of uncomplexed actin in the ADP state.
Science. 293:708–711. 2001.PubMed/NCBI View Article : Google Scholar
|
51
|
Harrison JD and Fielding JW: Prognostic
factors for gastric cancer influencing clinical practice. World J
Surg. 19:496–500. 1995.PubMed/NCBI View Article : Google Scholar
|