
Kidney involvement in coronavirus‑associated diseases (Review)
- Authors:
- Zhicai Feng
- Yuqing Chen
- Yuqin Wu
- Jianwen Wang
- Hao Zhang
- Wei Zhang
-
Affiliations: Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China, The Graduate School of Fujian Medical University, Fuzhou, Fujian 350108, P.R. China, Department of Radiology, The First Hospital of Changsha, Changsha, Hunan 410011, P.R. China - Published online on: February 13, 2021 https://doi.org/10.3892/etm.2021.9792
- Article Number: 361
-
Copyright: © Feng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Kapoor M, Pringle K, Kumar A, Dearth S, Liu L, Lovchik J, Perez O, Pontones P, Richards S, Yeadon-Fagbohun J, et al: Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States. Clin Infect Dis. 59:1511–1518. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhong NS, Zheng BJ, Li YM, Poon Xie ZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, et al: Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 362:1353–1358. 2003.PubMed/NCBI View Article : Google Scholar | |
Plipat T, Buathong R, Wacharapluesadee S, Siriarayapon P, Pittayawonganon C, Sangsajja C, Kaewpom T, Petcharat S, Ponpinit T, Jumpasri J, et al: Imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection from Oman to Thailand, June 2015. Euro Surveill. 22(30598)2017.PubMed/NCBI View Article : Google Scholar | |
Vijayanand P, Wilkins E and Woodhead M: Severe acute respiratory syndrome (SARS): A review. Clin Med. 4:152–160. 2004.PubMed/NCBI View Article : Google Scholar | |
Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, Wise M, Patel A, Izmirly A, Aljuaid A, et al: A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med. 7(301ra132)2015.PubMed/NCBI View Article : Google Scholar | |
Paules CI, Marston HD and Fauci AS: Coronavirus infections-More Than Just the common cold. JAMA. 323:707–708. 2020.PubMed/NCBI View Article : Google Scholar | |
Fehr AR and Perlman S: Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 1282:1–23. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang SF, Tuo JL, Huang XB, Zhu X, Zhang DM, Zhou K, Yuan L, Luo HJ, Zheng BJ, Yuen KY, et al: Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou. PLoS One. 13(e0191789)2018.PubMed/NCBI View Article : Google Scholar | |
Berry M, Gamieldien J and Fielding BC: Identification of new respiratory viruses in the new millennium. Viruses. 7:996–1019. 2015.PubMed/NCBI View Article : Google Scholar | |
Chan PK and Chan MC: Tracing the SARS-coronavirus. J Thorac Dis. 5 (Suppl 2):S118–S121. 2013.PubMed/NCBI View Article : Google Scholar | |
Zumla A, Hui DS and Perlman S: Middle East respiratory syndrome. Lancet. 386:995–1007. 2015.PubMed/NCBI View Article : Google Scholar | |
Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST and Sridhar VS: Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for middle east respiratory syndrome coronavirus infections. Front Microbiol. 10(569)2019.PubMed/NCBI View Article : Google Scholar | |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020.PubMed/NCBI View Article : Google Scholar | |
Heymann DL, Mackenzie JS and Peiris M: SARS legacy: Outbreak reporting is expected and respected. Lancet. 381:779–781. 2013.PubMed/NCBI View Article : Google Scholar | |
Anderson LJ and Tong S: Update on SARS research and other possibly zoonotic coronaviruses. Int J Antimicrob Agents. 36 (Suppl 1):S21–S25. 2010.PubMed/NCBI View Article : Google Scholar | |
Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, Usmani AM, Hajjar W and Ahmed N: Novel coronavirus 2019-nCoV: Prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 24:2012–2019. 2020.PubMed/NCBI View Article : Google Scholar | |
Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, et al: Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 362:263–270. 2003.PubMed/NCBI View Article : Google Scholar | |
Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stöhr K and Osterhaus AD: Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 423(240)2003.PubMed/NCBI View Article : Google Scholar | |
Peiris JS, Yuen KY, Osterhaus AD and Stöhr K: The severe acute respiratory syndrome. N Engl J Med. 349:2431–2441. 2003.PubMed/NCBI View Article : Google Scholar | |
Woodhead M, Ewig S and Torres A: Severe acute respiratory syndrome (SARS). Eur Respir J. 21:739–740. 2003.PubMed/NCBI View Article : Google Scholar | |
Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, Fung KS, Tang HL, Yan WW, Chan HW, et al: Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 67:698–705. 2005.PubMed/NCBI View Article : Google Scholar | |
Lu HY, Xu XY, Lei Y, Wu YF, Chen BW, Xiao F, Xie GQ and Han DM: Clinical features of probable severe acute respiratory syndrome in Beijing. World J Gastroenterol. 11:2971–2974. 2005.PubMed/NCBI View Article : Google Scholar | |
Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, et al: A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 348:1986–1994. 2003.PubMed/NCBI View Article : Google Scholar | |
Hsu LY, Lee CC, Green JA, Ang B, Paton NI, Lee L, Villacian JS, Lim PL, Earnest A and Leo YS: Severe acute respiratory syndrome (SARS) in Singapore: Clinical features of index patient and initial contacts. Emerg Infect Dis. 9:713–717. 2003.PubMed/NCBI View Article : Google Scholar | |
Jang TN, Yeh DY, Shen SH, Huang CH, Jiang JS and Kao SJ: Severe acute respiratory syndrome in Taiwan: Analysis of epidemiological characteristics in 29 cases. J Infect. 48:23–31. 2004.PubMed/NCBI View Article : Google Scholar | |
Cheng VC, Hung IF, Tang BS, Chu CM, Wong MM, Chan KH, Wu AK, Tse DM, Chan KS, Zheng BJ, et al: Viral replication in the nasopharynx is associated with diarrhea in patients with severe acute respiratory syndrome. Clin Infect Dis. 38:467–475. 2004.PubMed/NCBI View Article : Google Scholar | |
Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, et al: Multiple organ infection and the pathogenesis of SARS. J Exp Med. 202:415–424. 2005.PubMed/NCBI View Article : Google Scholar | |
Lang ZW, Zhang LJ, Zhang SJ, Meng X, Li JQ, Song CZ, Sun L, Zhou YS and Dwyer DE: A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology. 35:526–531. 2003.PubMed/NCBI View Article : Google Scholar | |
Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, et al: Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol. 203:622–630. 2004.PubMed/NCBI View Article : Google Scholar | |
Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, et al: Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet. 361:1767–1772. 2003.PubMed/NCBI View Article : Google Scholar | |
Chan KH, Poon LL, Cheng VC, Guan Y, Hung IF, Kong J, Yam LY, Seto WH, Yuen KY and Peiris JS: Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis. 10:294–299. 2004.PubMed/NCBI View Article : Google Scholar | |
Cheng PK, Wong DA, Tong LK, Ip SM, Lo AC, Lau CS, Yeung EY and Lim WW: Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet. 363:1699–1700. 2004.PubMed/NCBI View Article : Google Scholar | |
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD and Fouchier RA: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 367:1814–1820. 2012.PubMed/NCBI View Article : Google Scholar | |
Cho H, Excler JL, Kim JH and Yoon IK: Development of Middle East respiratory syndrome coronavirus vaccines-advances and challenges. Hum Vaccin Immunother. 14:304–313. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun B, He H, Wang Z, Qu J, Li X, Ban C, Wan J, Cao B, Tong Z and Wang C: Emergent severe acute respiratory distress syndrome caused by adenovirus type 55 in immunocompetent adults in 2013: A prospective observational study. Crit Care. 18(456)2014.PubMed/NCBI View Article : Google Scholar | |
Al Ghamdi M, Alghamdi KM, Ghandoora Y, Alzahrani A, Salah F, Alsulami A, Bawayan MF, Vaidya D, Perl TM and Sood G: Treatment outcomes for patients with Middle Eastern respiratory syndrome coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect Dis. 16(174)2016.PubMed/NCBI View Article : Google Scholar | |
Sherbini N, Iskandrani A, Kharaba A, Khalid G, Abduljawad M and Al-Jahdali H: Middle East respiratory syndrome coronavirus in Al-Madinah City, Saudi Arabia: Demographic, clinical and survival data. J Epidemiol Glob Health. 7:29–36. 2017.PubMed/NCBI View Article : Google Scholar | |
Eckerle I, Muller MA, Kallies S, Gotthardt DN and Drosten C: In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) Coronavirus infection. Virol J. 10(359)2013.PubMed/NCBI View Article : Google Scholar | |
Poissy J, Goffard A, Parmentier-Decrucq E, Favory R, Kauv M, Kipnis E, Mathieu D, van der Werf S and Guery B: MERS-CoV Biology Group. Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol. 61:275–278. 2014.PubMed/NCBI View Article : Google Scholar | |
Nassar MS, Bakhrebah MA, Meo SA, Alsuabeyl MS and Zaher WA: Middle East respiratory syndrome coronavirus (MERS-CoV) infection: Epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmacol Sci. 22:4956–4961. 2018.PubMed/NCBI View Article : Google Scholar | |
Cha RH, Joh JS, Jeong I, Lee JY, Shin HS, Kim G and Kim Y: Critical Care Team of National Medical Center. Renal Complications and their prognosis in Korean patients with Middle East respiratory syndrome-coronavirus from the central MERS-CoV designated hospital. J Korean Med Sci. 30:1807–1814. 2015.PubMed/NCBI View Article : Google Scholar | |
Alsaad KO, Hajeer AH, Al Balwi M, Al Moaiqel M, Al Oudah N, Al Ajlan A, AlJohani S, Alsolamy S, Gmati GE, Balkhy H, et al: 2. Histopathology. 72:516–524. 2018. | |
Ng DL, Al Hosani F, Keating MK, Gerber SI, Jones TL, Metcalfe MG, Tong S, Tao Y, Alami NN, Haynes LM, et al: Clinicopathologic, immunohistochemical, and Ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates, April 2014. Am J Pathol. 186:652–658. 2016.PubMed/NCBI View Article : Google Scholar | |
Munster VJ, Koopmans M, van Doremalen N, van Riel D and de Wit E: A novel coronavirus emerging in china-key questions for impact assessment. N Engl J Med. 382:692–694. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020.PubMed/NCBI View Article : Google Scholar | |
Perlman S: Another decade, another coronavirus. N Engl J Med. 382:760–762. 2020.PubMed/NCBI View Article : Google Scholar | |
Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, et al: The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 91:264–266. 2020.PubMed/NCBI View Article : Google Scholar | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020.PubMed/NCBI View Article : Google Scholar | |
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S and Yuen KY: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 9:221–236. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020.PubMed/NCBI View Article : Google Scholar | |
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al: Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 8:475–481. 2020.PubMed/NCBI View Article : Google Scholar | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, Li SB, Wang HY, Zhang S, Gao HN, et al: Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ. 368(m606)2020.PubMed/NCBI View Article : Google Scholar | |
Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, Su Y, Ma Z, Zhang Y, Li Z, et al: COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy. 75:1742–1752. 2020.PubMed/NCBI View Article : Google Scholar | |
Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S and Xu G: Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 97:829–838. 2020.PubMed/NCBI View Article : Google Scholar | |
Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, Yi F, Yang HC, Fogo AB, Nie X and Zhang C: Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 98:219–227. 2020.PubMed/NCBI View Article : Google Scholar | |
Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, Ma Z, Huang Y, Liu W, Yao Y, et al: Renal involvement and Early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 31:1157–1165. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen YT, Shao SC, Lai EC, Hung MJ and Chen YC: Mortality rate of acute kidney injury in SARS, MERS, and COVID-19 infection: A systematic review and meta-analysis. Crit Care. 24(439)2020.PubMed/NCBI View Article : Google Scholar | |
Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lemaire X, Vuotto F, Goffard A, Behillil S, Enouf V, et al: Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: A report of nosocomial transmission. Lancet. 381:2265–2272. 2013.PubMed/NCBI View Article : Google Scholar | |
Chan VW, Chiu PK, Yee CH, Yuan Y, Ng CF and Teoh JY: A systematic review on COVID-19: Urological manifestations, viral RNA detection and special considerations in urological conditions. World J Urol: May 27, 2020 (Epub ahead of print). doi: 10.1007/s00345-020-03246-4. | |
Müller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Wollny R, Bestebroer TM, Specht S, Suliman T, et al: Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. mBio. 3:e00515–12. 2012.PubMed/NCBI View Article : Google Scholar | |
Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, et al: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 181:905–913.e7. 2020.PubMed/NCBI View Article : Google Scholar | |
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004.PubMed/NCBI View Article : Google Scholar | |
Rakušan D, Bürgelová M, Vaněčková I, Vaňourková Z, Husková Z, Skaroupková P, Mrázová I, Opočenský M, Kramer HJ, Netuka I, et al: Knockout of angiotensin 1-7 receptor Mas worsens the course of two-kidney, one-clip Goldblatt hypertension: Roles of nitric oxide deficiency and enhanced vascular responsiveness to angiotensin II. Kidney Blood Press Res. 33:476–488. 2010.PubMed/NCBI View Article : Google Scholar | |
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–454. 2003.PubMed/NCBI View Article : Google Scholar | |
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, et al: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 495:251–254. 2013.PubMed/NCBI View Article : Google Scholar | |
Li F and Du L: MERS coronavirus: An emerging zoonotic virus. Viruses. 11(663)2019.PubMed/NCBI View Article : Google Scholar | |
Abdel-Moneim AS: Middle East respiratory syndrome coronavirus (MERS-CoV): Evidence and speculations. Arch Virol. 159:1575–1584. 2014.PubMed/NCBI View Article : Google Scholar | |
Kenny AJ, Booth AG, George SG, Ingram J, Kershaw D, Wood EJ and Young AR: Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem J. 157:169–182. 1976.PubMed/NCBI View Article : Google Scholar | |
Lian Q, Wang S, Zhang G, Wang D, Luo G, Tang J, Chen L and Gu J: HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteomics Bioinformatics. 16:269–275. 2018.PubMed/NCBI View Article : Google Scholar | |
Ponten F, Jirstrom K and Uhlen M: The human protein atlas-a tool for pathology. J Pathol. 216:387–393. 2008.PubMed/NCBI View Article : Google Scholar | |
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347(1260419)2015.PubMed/NCBI View Article : Google Scholar | |
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T and Chen Q: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 12(8)2020.PubMed/NCBI View Article : Google Scholar | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar | |
Harmer D, Gilbert M, Borman R and Clark KL: Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 532:107–110. 2002.PubMed/NCBI View Article : Google Scholar | |
Lely AT, Hamming I, van Goor H and Navis GJ: Renal ACE2 expression in human kidney disease. J Pathol. 204:587–593. 2004.PubMed/NCBI View Article : Google Scholar | |
Pala L, Mannucci E, Pezzatini A, Ciani S, Sardi J, Raimondi L, Ognibene A, Cappadona A, Vannelli BG and Rotella CM: Dipeptidyl peptidase-IV expression and activity in human glomerular endothelial cells. Biochem Biophys Res Commun. 310:28–31. 2003.PubMed/NCBI View Article : Google Scholar | |
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, et al: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 11:875–879. 2005.PubMed/NCBI View Article : Google Scholar | |
Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, et al: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503:535–538. 2013.PubMed/NCBI View Article : Google Scholar | |
Strawn WB, Richmond RS, Ann Tallant E, Gallagher PE and Ferrario CM: Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br J Haematol. 126:120–126. 2004.PubMed/NCBI View Article : Google Scholar | |
Batlle D, Wysocki J and Satchell K: Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin Sci. 134:543–545. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, Gao H, Huang L, Liu YL, Ma CM, et al: Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 57:450–459. 2007.PubMed/NCBI | |
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS and McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367:1260–1263. 2020.PubMed/NCBI View Article : Google Scholar | |
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A and Li F: Structural basis of receptor recognition by SARS-CoV-2. Nature. 581:221–224. 2020.PubMed/NCBI View Article : Google Scholar | |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020.PubMed/NCBI View Article : Google Scholar | |
Pan XW, Xu D, Zhang H, Zhou W, Wang LH and Cui XG: Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis. Intensive Care Med. 46:1114–1116. 2020.PubMed/NCBI View Article : Google Scholar | |
Farkash EA, Wilson AM and Jentzen JM: Ultrastructural evidence for direct renal infection with SARS-CoV-2. J Am Soc Nephrol. 31:1683–1687. 2020.PubMed/NCBI View Article : Google Scholar | |
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Kotani O, Sato H, Sekimukai H, Fukushi S, Suzuki T, Sato Y, Takeda M, et al: Acute respiratory infection in human Dipeptidyl Peptidase 4-transgenic mice infected with Middle East respiratory syndrome coronavirus. J Virol. 93:e01818–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, et al: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 500:227–231. 2013.PubMed/NCBI View Article : Google Scholar | |
Deeks SG, Tracy R and Douek DC: Systemic effects of inflammation on health during chronic HIV infection. Immunity. 39:633–645. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang W, Li G, De Wu Luo Z, Pan P, Tian M, Wang Y, Xiao F, Li A, Wu K, et al: Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1β secretion. Nat Commun. 9(106)2018.PubMed/NCBI View Article : Google Scholar | |
Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS and Sung JJ: Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 136:95–103. 2004.PubMed/NCBI View Article : Google Scholar | |
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM and Suliman BA: MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 104:8–13. 2018.PubMed/NCBI View Article : Google Scholar | |
Al-Jasser FS, Nouh RM and Youssef RM: Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014-2015. J Infect Public Health. 12:171–177. 2019.PubMed/NCBI View Article : Google Scholar | |
Reichsoellner M, Raggam RB, Wagner J, Krause R and Hoenigl M: Clinical evaluation of multiple inflammation biomarkers for diagnosis and prognosis for patients with systemic inflammatory response syndrome. J Clin Microbiol. 52:4063–4066. 2014.PubMed/NCBI View Article : Google Scholar | |
Hui DSC and Zumla A: Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. Infect Dis Clin North Am. 33:869–889. 2019.PubMed/NCBI View Article : Google Scholar | |
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR and Katze MG: Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 76:16–32. 2012.PubMed/NCBI View Article : Google Scholar | |
Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, Villa G and Fiaccadori E: Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. 31:351–359. 2018.PubMed/NCBI View Article : Google Scholar | |
Martinez-Garcia JJ, Leon-Sicairos NM, Canizalez-Roman A and García-Arellano BA: Fluid balance and acute kidney injury in septic shock. Bol Med Hosp Infant Mex. 74:282–288. 2017.PubMed/NCBI View Article : Google Scholar : (In Spanish). | |
Jia X, Liu B, Bao L, Lv Q, Li F, Li H, An Y, Zhang X, Cao B and Wang C: Delayed oseltamivir plus sirolimus treatment attenuates H1N1 virus-induced severe lung injury correlated with repressed NLRP3 inflammasome activation and inflammatory cell infiltration. PLoS Pathog. 14(e1007428)2018.PubMed/NCBI View Article : Google Scholar | |
Lorz C, Justo P, Sanz A, Subirá D, Egido J and Ortiz A: Paracetamol-induced renal tubular injury: A role for ER stress. J Am Soc Nephrol. 15:380–389. 2004.PubMed/NCBI View Article : Google Scholar | |
Khwaja A: KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin Pract. 120:c179–c184. 2012.PubMed/NCBI View Article : Google Scholar | |
Al-Dorzi HM, Aldawood AS, Khan R, Baharoon S, Alchin JD, Matroud AA, Al Johany SM, Balkhy HH and Arabi YM: The critical care response to a hospital outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: An observational study. Ann Intensive Care. 6(101)2016.PubMed/NCBI View Article : Google Scholar | |
Li Y, Cao C, Huang L, Xiong H, Mao H, Yin Q and Luo X: ‘Awake’ extracorporeal membrane oxygenation combined with continuous renal replacement therapy for the treatment of severe chemical gas inhalation lung injury. J Burn Care Res. 41:908–912. 2020.PubMed/NCBI View Article : Google Scholar | |
Ostermann M, Connor M Jr and Kashani K: Continuous renal replacement therapy during extracorporeal membrane oxygenation: Why, when and how? Curr Opin Crit Care. 24:493–503. 2018.PubMed/NCBI View Article : Google Scholar | |
Xiong F, Tang H, Liu L, Tu C, Tian JB, Lei CT, Liu J, Dong JW, Chen WL, Wang XH, et al: Clinical characteristics of and medical interventions for COVID-19 in hemodialysis patients in Wuhan, China. J Am Soc Nephrol. 31:1387–1397. 2020.PubMed/NCBI View Article : Google Scholar | |
Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, Cardona X, Inguaggiato P, Pilotto L, d'Intini V and Bellomo R: Interpreting the mechanisms of continuous renal replacement therapy in sepsis: The peak concentration hypothesis. Artif Organs. 27:792–801. 2003.PubMed/NCBI View Article : Google Scholar | |
Ma J, Xia P, Zhou Y, Liu Z, Zhou X, Wang J, Li T, Yan X, Chen L, Zhang S, et al: Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Immunol. 214(108408)2020.PubMed/NCBI View Article : Google Scholar | |
Tang B, Li S, Xiong Y, Tian M, Yu J, Xu L, Zhang L, Li Z, Ma J, Wen F, et al: COVID-19 pneumonia in a hemodialysis patient. Kidney Med. 2:354–358. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, et al: Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 117:10970–10975. 2020.PubMed/NCBI View Article : Google Scholar | |
Fu B, Xu X and Wei H: Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med. 18(164)2020.PubMed/NCBI View Article : Google Scholar | |
Yang XH, Sun RH, Zhao MY, Chen EZ, Liu J, Wang HL, Yang RL and Chen DC: Expert recommendations on blood purification treatment protocol for patients with severe COVID-19: Recommendation and consensus. Chronic Dis Transl Med. 6:106–114. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yu L, Tang L, Zhu M, Jin Y, Wang Z and Li L: A promising anti-cytokine-storm targeted therapy for COVID-19: The artificial-liver blood-purification system. Engineering (Beijing): Mar 20, 2020 (Epub ahead of print). doi: 10.1016/j.eng.2020.03.006. | |
Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, Horick NK, Healy BC, Shah R, Bensaci AM, et al: Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med. 383:2333–2344. 2020.PubMed/NCBI View Article : Google Scholar | |
RECOVERY Collaborative Group. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, et al: Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med: Jul 17, 2020 (Epub ahead of print). doi: 10.1056/NEJMoa2021436. |