1
|
Dimaras H, Kimani K, Dimba EA, Gronsdahl
P, White A, Chan HS and Gallie BL: Retinoblastoma. Lancet.
379:1436–1446. 2012.PubMed/NCBI View Article : Google Scholar
|
2
|
Kivelä T: The epidemiological challenge of
the most frequent eye cancer: Retinoblastoma, an issue of birth and
death. Br J Ophthalmol. 93:1129–1131. 2009.PubMed/NCBI View Article : Google Scholar
|
3
|
Cimino PJ, Robirds DH, Tripp SR, Pfeifer
JD, Abel HJ and Duncavage EJ: Retinoblastoma gene mutations
detected by whole exome sequencing of merkel cell carcinoma. Mod
Pathol. 27:1073–1087. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Khan AA, Bukhari MH and Mehboob R:
Association of retinoblastoma with clinical and histopathological
risk factors. Nat Sci. 5:437–444. 2013.
|
5
|
Abramson DH, Shields CL, Munier FL and
Chantada GL: Treatment of retinoblastoma in 2015: Agreement and
disagreement. JAMA Ophthalmol. 133:1341–1347. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Fan Q, Yang L, Zhang X, Peng X, Wei S, Su
D, Zhai Z, Hua X and Li H: The emerging role of exosome-derived
non-coding RNAs in cancer biology. Cancer Lett. 414:107–115.
2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Gutschner T and Diederichs S: The
hallmarks of cancer: A long non-coding RNA point of view. RNA Biol.
9:703–719. 2012.PubMed/NCBI View Article : Google Scholar
|
9
|
Yang Y and Peng XW: The silencing of long
non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of
retinoblastoma cells through the ATM-E2F1 signaling pathway. Biosci
Rep. 38(BSR20180558)2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Zhang H, Zhong J, Bian Z, Fang X, Peng Y
and Hu Y: Long non-coding RNA CCAT1 promotes human retinoblastoma
SO-RB50 and Y79 cells through negative regulation of miR-218-5p.
Biomed Pharmacother. 87:683–691. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang A, Shang W, Nie Q, Li T and Li S:
Long non-coding RNA H19 suppresses retinoblastoma progression via
counteracting miR-17-92 cluster. J Cell Biochem. 119:3497–3509.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Yu X, Li Z, Zheng H, Chan MT and Wu WK:
NEAT 1: A novel cancer-related long non-coding RNA. Cell Prolif.
50(e12329)2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Li X, Wang S, Li Z, Long X, Guo Z, Zhang
G, Zu J, Chen Y and Wen L: The lncRNA NEAT1 facilitates cell growth
and invasion via the miR-211/HMGA2 axis in breast cancer. Int J
Biol Macromol. 105:346–353. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Guo H, Yang S, Zhao S, Li L, Yan M and Fan
M: LncRNA NEAT1 regulates cervical carcinoma proliferation and
invasion by targeting AKT/PI3K. Eur Rev Med Pharmacol Sci.
22:4090–4097. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Lü J, Qian J, Chen F, Tang X, Li C and
Cardoso WV: Differential expression of components of the microRNA
machinery during mouse organogenesis. Biochem Biophys Res Commun.
334:319–323. 2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhao JJ, Yang J, Lin J, Yao N, Zhu Y,
Zheng J, Xu J, Cheng JQ, Lin JY and Ma X: Identification of miRNAs
associated with tumorigenesis of retinoblastoma by miRNA microarray
analysis. Childs Nerv Syst. 25:13–20. 2009.PubMed/NCBI View Article : Google Scholar
|
17
|
To KH, Pajovic S, Gallie BL and Thériault
BL: Regulation of p14ARF expression by miR-24: A potential
mechanism compromising the p53 response during retinoblastoma
development. BMC Cancer. 12(69)2012.PubMed/NCBI View Article : Google Scholar
|
18
|
Yu F, Pang G and Zhao G: ANRIL acts as
onco-lncRNA by regulation of microRNA-24/c-Myc, MEK/ERK and
Wnt/β-catenin pathway in retinoblastoma. Int J Biol Macromol.
128:583–592. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Takahashi N, Takahashi Y and Putnam FW:
Periodicity of leucine and tandem repetition of a 24-amino acid
segment in the primary structure of leucine-rich alpha
2-glycoprotein of human serum. Proc Natl Acad Sci USA.
82:1906–1910. 1985.PubMed/NCBI View Article : Google Scholar
|
20
|
Serada S, Fujimoto M, Terabe F, Iijima H,
Shinzaki S, Matsuzaki S, Ohkawara T, Nezu R, Nakajima S, Kobayashi
T, et al: Serum leucine-rich alpha-2 glycoprotein is a disease
activity biomarker in ulcerative colitis. Inflamm Bowel Dis.
18:2169–2179. 2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang X, Abraham S, McKenzie JAG, Jeffs N,
Swire M, Tripathi VB, Luhmann UFO, Lange CAK, Zhai Z, Arthur HM, et
al: LRG1 promotes angiogenesis by modulating endothelial TGF-β
signalling. Nature. 499:306–311. 2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Nakajima M, Miyajima M, Ogino I, Watanabe
M, Miyata H, Karagiozov KL, Arai H, Hagiwara Y, Segawa T, Kobayashi
K and Hashimoto Y: Leucine-rich α-2-glycoprotein is a marker for
idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien).
153:1339–1346. 2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Lindén M, Lind SB, Mayrhofer C, Segersten
U, Wester K, Lyutvinskiy Y, Zubarev R, Malmström PU and Pettersson
U: Proteomic analysis of urinary biomarker candidates for nonmuscle
invasive bladder cancer. Proteomics. 12:135–144. 2012.PubMed/NCBI View Article : Google Scholar
|
24
|
Andersen JD, Boylan KL, Jemmerson R,
Geller MA, Misemer B, Harrington KM, Weivoda S, Witthuhn BA,
Argenta P, Vogel RI and Skubitz AP: Leucine-rich
alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian
cancer patients. J Ovarian Res. 3(21)2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Amer R, Tiosano L and Pe'er J:
Leucine-rich α-2-glycoprotein-1 (LRG-1) expression in
retinoblastoma. Invest Ophthalmol Vis Sci. 59:685–692.
2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
27
|
Yilmaz M and Christofori G: EMT, the
cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.
28:15–33. 2009.PubMed/NCBI View Article : Google Scholar
|
28
|
Yang J and Weinberg RA:
Epithelial-mesenchymal transition: At the crossroads of development
and tumor metastasis. Dev Cell. 14:818–829. 2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Wang JX, Yang Y and Li K: Long noncoding
RNA DANCR aggravates retinoblastoma through miR-34c and miR-613 by
targeting MMP-9. J Cell Physiol. 233:6986–6995. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Hu C, Liu S, Han M, Wang Y and Xu C:
Knockdown of lncRNA XIST inhibits retinoblastoma progression by
modulating the miR-124/STAT3 axis. Biomed Pharmacother.
107:547–554. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Liu F, Chen N, Gong Y, Xiao R, Wang W and
Pan Z: The long non-coding RNA NEAT1 enhances
epithelial-to-mesenchymal transition and chemoresistance via the
miR-34a/c-Met axis in renal cell carcinoma. Oncotarget.
8:62927–62938. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Ji S, Wang S, Zhao X and Lv L: Long
noncoding RNA NEAT1 regulates the development of osteosarcoma
through sponging miR-34a-5p to mediate HOXA13 expression as a
competitive endogenous RNA. Mol Genet Genomic Med.
7(e673)2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Wang L, Yang D, Tian R and Zhang H: NEAT1
promotes retinoblastoma progression via modulating miR-124. J Cell
Biochem. 120:15585–15593. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao
Z, Zhi H, Wang T, Guo Z and Li X: Identification of
lncRNA-associated competing triplets reveals global patterns and
prognostic markers for cancer. Nucleic Acids Res. 43:3478–3489.
2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Song L, Yang J, Duan P, Xu J, Luo X, Luo
F, Zhang Z, Hou T, Liu B and Zhou Q: MicroRNA-24 inhibits
osteosarcoma cell proliferation both in vitro and in vivo by
targeting LPAATβ. Arch Biochem Biophys. 535:128–135.
2013.PubMed/NCBI View Article : Google Scholar
|
36
|
Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu
Y, Li C, Su L, Zhu Z, et al: Tumor suppressor miR-24 restrains
gastric cancer progression by downregulating RegIV. Mol Cancer.
13(127)2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhang S, Zhang C, Liu W, Zheng W, Zhang Y,
Wang S, Huang D, Liu X and Bai Z: MicroRNA-24 upregulation inhibits
proliferation, metastasis and induces apoptosis in bladder cancer
cells by targeting CARMA3. Int J Oncol. 47:1351–1360.
2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Bates RC and Mercurio AM: The
epithelial-mesenchymal tansition (EMT) and colorectal cancer
progression. Cancer Biol Ther. 4:371–376. 2005.PubMed/NCBI View Article : Google Scholar
|
39
|
Li L and Li W: Epithelial-mesenchymal
transition in human cancer: Comprehensive reprogramming of
metabolism, epigenetics, and differentiation. Pharmacol Ther.
150:33–46. 2015.PubMed/NCBI View Article : Google Scholar
|
40
|
Li X, Wang S, Li Z, Long X, Guo Z, Zhang
G, Zu J, Chen Y and Wen L: NEAT1 induces epithelial-mesenchymal
transition and 5-FU resistance through the miR-129/ZEB2 axis in
breast cancer. FEBS Lett. 591(570)2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L,
Zhang K, Zeng D and Liao R: The long non-coding RNA NEAT1 regulates
epithelial to mesenchymal transition and radioresistance in through
miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol.
37:11733–11741. 2016.PubMed/NCBI View Article : Google Scholar
|