1
|
National Center for Cardiovascular
Disease: China. Report on Cardiovascular disease in China (2016).
Encyclopedia of China Publishing House, Beijing, 2017.
|
2
|
Roth GA, Johnson C, Abajobir A, Abd-Allah
F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al:
Global, regional and national burden of cardiovascular diseases for
10 causes, 1990 to 2015. J Am Coll Cardiol. 70:1–25.
2017.PubMed/NCBI View Article : Google Scholar
|
3
|
McKenney-Drake ML, Moghbel MC, Paydary K,
Alloosh M, Houshmand S, Moe S, Salavati A, Sturek JM, Territo PR,
Weaver C, et al: 18F-NaF and 18F-FDG as
molecular probes in the evaluation of atherosclerosis. Eur J Nucl
Med Mol Imaging. 45:2190–2200. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Ross R: Atherosclerosis - an inflammatory
disease. N Engl J Med. 340:115–126. 1999.PubMed/NCBI View Article : Google Scholar
|
5
|
Fan LM: Rethinking the pathogenesis of
atherosclerosis. Chin J Arterioscler. 13:249–253. 2005.
|
6
|
Hosono M, de Boer OJ, van der Wal AC, van
der Loos CM, Teeling P, Piek JJ, Ueda M and Becker AE: Increased
expression of T cell activation markers (CD25, CD26, CD40L and
CD69) in atherectomy specimens of patients with unstable angina and
acute myocardial infarction. Atherosclerosis. 168:73–80.
2003.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen W, Bural GG, Torigian DA, Rader DJ
and Alavi A: Emerging role of FDG-PET/CT in assessing
atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging.
36:144–151. 2009.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang ZJ, Deng G, Huang HB, Li AM, Ju SH,
Zhao R, Jin H and Wei XY: Noninvasive observation of
atherosclerosis in mice with 7.0T MR and Micro-PET. Chin J Med
Imaging Technol. 26:209–212. 2010.
|
9
|
Ogawa M, Ishino S, Mukai T, Asano D,
Teramoto N, Watabe H, Kudomi N, Shiomi M, Magata Y, Iida H, et al:
(18)F-FDG accumulation in atherosclerotic plaques:
Immunohistochemical and PET imaging study. J Nucl Med.
45:1245–1250. 2004.PubMed/NCBI
|
10
|
Tawakol A, Migrino RQ, Hoffmann U, Abbara
S, Houser S, Gewirtz H, Muller JE, Brady TJ and Fischman AJ:
Noninvasive in vivo measurement of vascular inflammation with F-18
fluorodeoxyglucose positron emission tomography. J Nucl Cardiol.
12:294–301. 2005.PubMed/NCBI View Article : Google Scholar
|
11
|
Feng TT and Zhao QM: Advances of PET/CT in
noninvasive assessing of atherosclerosis plaque. Chin J Med Imaging
Technol. 26:971–973. 2010.
|
12
|
Lau AZ, Miller JJ, Robson MD and Tyler DJ:
Cardiac perfusion imaging using hyperpolarized (13)C urea using
flow sensitizing gradients. Magn Reson Med. 75:1474–1483.
2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Di Cesare Mannelli L, Micheli L, Carta F,
Cozzi A, Ghelardini C and Supuran CT: Carbonic anhydrase inhibition
for the management of cerebral ischemia: In vivo evaluation of
sulfonamide and coumarin inhibitors. J Enzyme Inhib Med Chem.
31:894–899. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Pan L, Yang F, Lu C, Jia C, Wang Q and
Zeng K: Effects of sevoflurane on rats with ischemic brain injury
and the role of the TREK-1 channel. Exp Ther Med. 14:2937–2942.
2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Li S, et al: Comparative study on
anesthetic role of chloral hydrate on rat. Drug Res. 23:22–23.
2014.
|
16
|
Wang JF: Guidelines for the Management and
Use of Laboratory Animals. Shanghai Science and Technology Press,
2012.
|
17
|
Tabas I and Bornfeldt KE: Macrophage
phenotype and function in different stages of atherosclerosis. Circ
Res. 118:653–667. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Zhang Y, Zhang C and Zhang M: A new era of
anti-inflammatory therapy for atherosclerosis. Zhonghua Xin Xue
Guan Bing Za Zhi. 46:332–337. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
19
|
Kubota R, Yamada S, Kubota K, Ishiwata K,
Tamahashi N and Ido T: Intratumoral distribution of
fluorine-18-fluorodeoxyglucose in vivo: High accumulation in
macrophages and granulation tissues studied by
microautoradiography. J Nucl Med. 33:1972–1980. 1992.PubMed/NCBI
|
20
|
Tatsumi M, Cohade C, Nakamoto Y and Wahl
RL: Fluorodeoxyglucose uptake in the aortic wall at PET/CT:
Possible finding for active atherosclerosis. Radiology.
229:831–837. 2003.PubMed/NCBI View Article : Google Scholar
|
21
|
Cullen P, Baetta R, Bellosta S, Bernini F,
Chinetti G, Cignarella A, von Eckardstein A, Exley A, Goddard M,
Hofker M, et al: MAFAPS Consortium: Rupture of the atherosclerotic
plaque: Does a good animal model exist? Arterioscler Thromb Vasc
Biol. 23:535–542. 2003.PubMed/NCBI View Article : Google Scholar
|
22
|
Ogawa M, Magata Y, Kato T, Hatano K,
Ishino S, Mukai T, Shiomi M, Ito K and Saji H: Application of
18F-FDG PET for monitoring the therapeutic effect of
antiinflammatory drugs on stabilization of vulnerable
atherosclerotic plaques. J Nucl Med. 47:1845–1850. 2006.PubMed/NCBI
|
23
|
Matter CM, Wyss MT, Meier P, Späth N, von
Lukowicz T, Lohmann C, Weber B, Ramirez de Molina A, Lacal JC,
Ametamey SM, et al: 18F-choline images murine
atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol.
26:584–589. 2006.PubMed/NCBI View Article : Google Scholar
|
24
|
Zhao QM, Feng TT, Zhao X, Xu ZM, Liu Y, Li
DP, Li LQ, Su G and Zhang XX: Imaging of atherosclerotic aorta of
rabbit model by detection of plaque inflammation with fluorine-18
fluorodeoxyglucose positron emission tomography/computed
tomography. Chin Med J (Engl). 124:911–917. 2011.PubMed/NCBI
|
25
|
Knesaurek K, Machac J, Vallabhajosula S
and Buchsbaum MS: A new iterative reconstruction technique for
attenuation correction in high-resolution positron emission
tomography. Eur J Nucl Med. 23:656–661. 1996.PubMed/NCBI View Article : Google Scholar
|
26
|
Lederman RJ, Raylman RR, Fisher SJ, Kison
PV, San H, Nabel EG and Wahl RL: Detection of atherosclerosis using
a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG).
Nucl Med Commun. 22:747–753. 2001.PubMed/NCBI View Article : Google Scholar
|
27
|
Wang XN, et al: Application of
18F-FDG nuclide imaging of atherosclerotic plaques in
apolipoprotein E-deficient mice. J Chin PLA Postgrad Med Sch.
6:645–647. 2011.
|
28
|
Wang HR and Yu CJ: New progress in
mechanism and treatment of atherosclerosis. J Cap Med Univ.
31:828–833. 2010.
|
29
|
Zhang YL, et al: Method of establishment
of model of experimental atherosclerosis in rats. J Wenzhou Med
Coll. 37:331–333. 2007.
|
30
|
Xue YQ and Huang SA: A fast method of
establishment of atherosclerotic rat model. Med Innov Chin. 11:1–4.
2014.
|
31
|
Zhou H, Wu XY, Yuan YB and Qi XH:
Comparison of methods for establishing a rat model of
atherosderosis using three-doses of Vitamin D3 and atherogenic
diet. Chin J Arterioscler. 20:995–998. 2012.
|
32
|
Guo YS, et al: Comparison on the three
duplication methods of atherosclerosis model in rat. Chin J
Arterioscler. 11:465–469. 2003.
|
33
|
Hu H, Xu Y, Liu C, Zhao H, Zhang H and
Wang L: Changes in behavior and in brain glucose metabolism in rats
after nine weeks on a high fat diet: A randomized controlled trial.
Shanghai Arch Psychiatry. 26:129–137. 2014.PubMed/NCBI View Article : Google Scholar
|
34
|
Dobrian AD, Davies MJ, Prewitt RL and
Lauterio TJ: Development of hypertension in a rat model of
diet-induced obesity. Hypertension. 35:1009–1015. 2000.PubMed/NCBI View Article : Google Scholar
|
35
|
Hamman RF: Genetic and environmental
determinants of non-insulin-dependent diabetes mellitus (NIDDM).
Diabetes Metab Rev. 8:287–338. 1992.PubMed/NCBI View Article : Google Scholar
|
36
|
Tankó LB, Bagger YZ, Alexandersen P,
Larsen PJ and Christiansen C: Peripheral adiposity exhibits an
independent dominant antiatherogenic effect in elderly women.
Circulation. 107:1626–1631. 2003.PubMed/NCBI View Article : Google Scholar
|
37
|
Chen J: Dietary capsaicin prevents insulin
resistance in high fat diet-induced mice. Di 3 Jun Yi Da Xue Xue
Bao. 35:585–588. 2013.(In Chinese).
|
38
|
Alexander RW: President's address. Common
mechanisms of multiple diseases: Why vegetables and exercise are
good for you. Trans Am Clin Climatol Assoc. 121:1–20.
2010.PubMed/NCBI
|
39
|
Zhang Z, Machac J, Helft G, Worthley SG,
Tang C, Zaman AG, Rodriguez OJ, Buchsbaum MS, Fuster V and Badimon
JJ: Non-invasive imaging of atherosclerotic plaque macrophage in a
rabbit model with F-18 FDG PET: A histopathological correlation.
BMC Nucl Med. 6(3)2006.PubMed/NCBI View Article : Google Scholar
|
40
|
Nahrendorf M, Zhang H, Hembrador S,
Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK and
Weissleder R: Nanoparticle PET-CT imaging of macrophages in
inflammatory atherosclerosis. Circulation. 117:379–387.
2008.PubMed/NCBI View Article : Google Scholar
|
41
|
Aziz K, Berger K, Claycombe K, Huang R,
Patel R and Abela GS: Noninvasive detection and localization of
vulnerable plaque and arterial thrombosis with computed tomography
angiography/positron emission tomography. Circulation. 2061–2070.
2008.PubMed/NCBI View Article : Google Scholar
|
42
|
Bucerius J, Dijkgraaf I, Mottaghy FM and
Schurgers LJ: Target identification for the diagnosis and
intervention of vulnerable atherosclerotic plaques beyond
18F-fluorodeoxyglucose positron emission tomography
imaging: Promising tracers on the horizon. Eur J Nucl Med Mol
Imaging. 46:251–265. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Tawakol A, Migrino RQ, Bashian GG, Bedri
S, Vermylen D, Cury RC, Yates D, LaMuraglia GM, Furie K, Houser S,
et al: In vivo 18F-fluorodeoxyglucose positron emission
tomography imaging provides a noninvasive measure of carotid plaque
inflammation in patients. J Am Coll Cardiol. 48:1818–1824.
2006.PubMed/NCBI View Article : Google Scholar
|
44
|
Pahk K, Joung C, Jung SM, Young Song H,
Yong Park J, Woo Byun J, Lee YS, Chul Paeng J, Kim C, Kim S, et al:
Visualization of synthetic vascular smooth muscle cells in
atherosclerotic carotid rat arteries by F-18 FDG PET. Sci Rep.
7(6989)2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Evans NR, Tarkin JM, Chowdhury MM,
Warburton EA and Rudd JH: PET imaging of atherosclerotic disease:
Advancing plaque assessment from anatomy to pathophysiology. Curr
Atheroscler Rep. 18(30)2016.PubMed/NCBI View Article : Google Scholar
|
46
|
Yang MF: Advancing the clinical
application of (18)F-fluorodeoxyglucose positron emission
tomography/computed tomography in cardiovascular inflammation.
Zhonghua Xin Xue Guan Bing Za Zhi. 48:181–185. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
47
|
Xie B, Chen BX, Wu JY, Liu X and Yang MF:
Factors relevant to atrial 18F-fluorodeoxyglucose uptake
in atrial Fibrillation. J Nucl Cardiol. 27:1501–1512. 2018.
|
48
|
Sinigaglia M, Mahida B, Piekarski E,
Chequer R, Mikail N, Benali K, Hyafil F, Le Guludec D and Rouzet F:
FDG atrial uptake is associated with an increased prevalence of
stroke in patients with atrial fibrillation. Eur J Nucl Med Mol
Imaging. 46:1268–1275. 2019.PubMed/NCBI View Article : Google Scholar
|