1
|
GBD 2015 Mortality and Causes of Death
Collaborators. Global, regional, and national life expectancy,
all-cause mortality, and cause-specific mortality for 249 causes of
death, 1980-2015: A systematic analysis for the Global Burden of
Disease Study 2015. Lancet. 388:1459–1544. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Piao JM, Wu W, Yang ZX, Li YZ, Luo Q and
Yu JL: MicroRNA-381 favors repair of nerve injury through
regulation of the SDF-1/CXCR4 signaling pathway via LRRC4 in acute
cerebral ischemia after cerebral lymphatic blockage. Cell Physiol
Biochem. 46:890–906. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Chamorro Á, Dirnagl U, Urra X and Planas
AM: Neuroprotection in acute stroke: Targeting excitotoxicity,
oxidative and nitrosative stress, and inflammation. Lancet Neurol.
15:869–881. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Hill MD, Martin RH, Mikulis D, Wong JH,
Silver FL, Terbrugge KG, Milot G, Clark WM, Macdonald RL, Kelly ME,
et al: Safety and efficacy of NA-1 in patients with iatrogenic
stroke after endovascular aneurysm repair (ENACT): A phase 2,
randomised, double-blind, placebo-controlled trial. Lancet Neurol.
11:942–950. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang
S, Wu B and Li J: Edaravone for acute ischaemic stroke. Cochrane
Database Syst Rev. (CD007230)2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Di Menna L, Molinaro G, Di Nuzzo L, Riozzi
B, Zappulla C, Pozzilli C, Turrini R, Caraci F, Copani A, Battaglia
G, et al: Fingolimod protects cultured cortical neurons against
excitotoxic death. Pharmacol Res. 67:1–9. 2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Iadecola C and Anrather J: The immunology
of stroke: From mechanisms to translation. Nat Med. 17:796–808.
2011.PubMed/NCBI View
Article : Google Scholar
|
8
|
Moskowitz MA, Lo EH and Iadecola C: The
science of stroke: Mechanisms in search of treatments. Neuron.
67:181–198. 2010.PubMed/NCBI View Article : Google Scholar
|
9
|
Yoon JH, Abdelmohsen K and Gorospe M:
Functional interactions among microRNAs and long noncoding RNAs.
Semin Cell Dev Biol. 34:9–14. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Li Z, Li J and Tang N: Long noncoding RNA
Malat1 is a potent autophagy inducer protecting brain microvascular
endothelial cells against oxygen-glucose
deprivation/reoxygenation-induced injury by sponging miR-26b and
upregulating ULK2 expression. Neuroscience. 354:1–10.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Yu SY, Dong B, Fang ZF, Hu XQ, Tang L and
Zhou SH: Knockdown of lnc RNA AK 139328 alleviates myocardial
ischaemia/reperfusion injury in diabetic mice via modulating
miR-204-3p and inhibiting autophagy. J Cell Mol Med. 22:4886–4898.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhu Y, Ren S, Jing T, Cai X, Liu Y, Wang
F, Zhang W, Shi X, Chen R, Shen J, et al: Clinical utility of a
novel urine-based gene fusion TTTY15-USP9Y in predicting prostate
biopsy outcome. Urol Oncol. 33:384.e9–e20. 2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X,
Cui Z, Zhang J, Yi K, Xu W, et al: RNA-seq analysis of prostate
cancer in the Chinese population identifies recurrent gene fusions,
cancer-associated long noncoding RNAs and aberrant alternative
splicings. Cell Res. 22:806–821. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Lai IL, Chang YS, Chan WL, Lee YT, Yen JC,
Yang CA, Hung SY and Chang JG: Male-specific long noncoding RNA
TTTY15 inhibits non-small cell lung cancer proliferation and
metastasis via TBX4. Int J Mol Sci. 20(3473)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Huang S, Tao W, Guo Z, Cao J and Huang X:
Suppression of long noncoding RNA TTTY15 attenuates hypoxia-induced
cardiomyocytes injury by targeting miR-455-5p. Gene. 701:1–8.
2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhong Y, Yu C and Qin W: LncRNA SNHG14
promotes inflammatory response induced by cerebral
ischemia/reperfusion injury through regulating miR-136-5p/ROCK1.
Cancer Gene Ther. 26:234–247. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Mavridis K, Stravodimos K and Scorilas A:
Downregulation and prognostic performance of microRNA 224
expression in prostate cancer. Clin Chem. 59:261–269.
2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion-from mechanism to translation. Nat Med. 17:1391–1401.
2011.PubMed/NCBI View
Article : Google Scholar
|
19
|
Carbone F, Bonaventura A and Montecucco F:
Neutrophil-related oxidants drive heart and brain remodeling after
ischemia/reperfusion injury. Front Physiol. 10(1587)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhuo Y and Zhuo J: Tranilast treatment
attenuates cerebral ischemia-reperfusion injury in rats through the
inhibition of inflammatory responses mediated by NF-κB and PPARs.
Clin Transl Sci. 12:196–202. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Allan SM and Rothwell NJ: Cytokines and
acute neurodegeneration. Nat Rev Neurosci. 2:734–744.
2001.PubMed/NCBI View
Article : Google Scholar
|
22
|
Chamorro A and Hallenbeck J: The harms and
benefits of inflammatory and immune responses in vascular disease.
Stroke. 37:291–293. 2006.PubMed/NCBI View Article : Google Scholar
|
23
|
Carninci P, Kasukawa T, Katayama S, Gough
J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al:
The transcriptional landscape of the mammalian genome. Science.
309:1559–1563. 2005.PubMed/NCBI View Article : Google Scholar
|
24
|
Leung A and Natarajan R: Non-coding RNAs
in vascular disease. Curr Opin Cardiol. 29:199–206. 2014.
|
25
|
Li J, Xuan Z and Liu C: Long non-coding
RNAs and complex human diseases. Int J Mol Sci. 14:18790–18808.
2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev
Cell Mol Biol. 298:229–317. 2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Dharap A, Pokrzywa C and Vemuganti R:
Increased binding of stroke-induced long non-coding RNAs to the
transcriptional corepressors Sin3A and coREST. ASN Neuro.
5:283–289. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Deng QW, Li S, Wang H, Sun HL, Zuo L, Gu
ZT, Lu G, Sun CZ, Zhang HQ and Yan FL: Differential long noncoding
RNA expressions in peripheral blood mononuclear cells for detection
of acute ischemic stroke. Clin Sci (Lond). 132:1597–1614.
2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Zheng J, Zhuo YY, Zhang C, Tang GY, Gu XY
and Wang F: LncRNA TTTY15 regulates hypoxia-induced vascular
endothelial cell injury via targeting miR-186-5p in cardiovascular
disease. Eur Rev Med Pharmacol Sci. 24:3293–3301. 2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Chang HL, Wang HC, Chunag YT, Chou CW, Lin
IL, Lai CS, Chang LL and Cheng KI: miRNA expression change in
dorsal root ganglia after peripheral nerve injury. J Mol Neurosci.
61:169–177. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Lefai E, Blanc S, Momken I, Antoun E,
Chery I, Zahariev A, Gabert L, Bergouignan A and Simon C: Exercise
training improves fat metabolism independent of total energy
expenditure in sedentary overweight men, but does not restore lean
metabolic phenotype. Int J Obes (Lond). 41:1728–1736.
2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Stary CM, Xu L, Sun X, Ouyang YB, White
RE, Leong J, Li J, Xiong X and Giffard RG: MicroRNA-200c
contributes to injury from transient focal cerebral ischemia by
targeting Reelin. Stroke. 46:551–556. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Xue Y, Yin P, Li G and Zhong D:
Genome-wide integration study of circulating miRNAs and peripheral
whole-blood mRNAs of male acute ischemic stroke patients.
Neuroscience. 380:27–37. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Liu G, Cao C and Zhu M: Peripheral blood
miR-451 may serve as a biomarker of ischemic stroke. Clin Lab.
65:2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao
L, Yan F, Liu X, Yu S, Ji X and Luo Y: MicroRNA-424 protects
against focal cerebral ischemia and reperfusion injury in mice by
suppressing oxidative stress. Stroke. 46:513–519. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Hayakawa K, Kawasaki M, Hirai T, Yoshida
Y, Tsushima H, Fujishiro M, Ikeda K, Morimoto S, Takamori K and
Sekigawa I: MicroRNA-766-3p contributes to anti-inflammatory
responses through the indirect inhibition of NF-κB signaling. Int J
Mol Sci. 20(809)2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Forsberg LA, Rasi C, Malmqvist N, Davies
H, Pasupulati S, Pakalapati G, Sandgren J, Diaz de Ståhl T,
Zaghlool A, Giedraitis V, et al: Mosaic loss of chromosome Y in
peripheral blood is associated with shorter survival and higher
risk of cancer. Nat Genet. 46:624–628. 2014.PubMed/NCBI View
Article : Google Scholar
|
38
|
Prensner JR and Feng FY: ‘Lincing’ the Y
chromosome to prostate cancer: TTTY15 takes center stage. Eur Urol.
Sep. 76:327–328. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Kang KP, Lee JE, Lee AS, Jung YJ, Kim D,
Lee S, Hwang HP, Kim W and Park SK: Effect of gender differences on
the regulation of renal ischemia-reperfusion-induced inflammation
in mice. Mol Med Rep. 9:2061–2068. 2014.PubMed/NCBI View Article : Google Scholar
|