1
|
Forbat E, Ali FR and Al-Niaimi F:
Dermatological indications for the use of isotretinoin beyond acne.
J Dermatolog Treat. 29:698–705. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
https://en.wikipedia.org/wiki/Isotretinoin#History.
|
3
|
Honein MA, Lindstrom JA and Kweder SL: Can
we ensure the safe use of known human teratogens? The iPLEDGE test
case. Drug Saf. 30:5–15. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Prevost N and English JC: Isotretinoin:
Update on controversial issues. J Pediatr Adolesc Gynecol.
26:290–293. 2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Jajoria H and Mysore V: Washout period for
pregnancy post isotretinoin therapy. Indian Dermatol Online J.
l1:239–242. 2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Tsukada M, Schröder M, Roos TC,
Chandraratna RA, Reichert U, Merk HF, Orfanos CE and Zouboulis CC:
13-cis retinoic acid exerts its specific activity on human
sebocytes through selective intracellular isomerization to
all-trans retinoic acid and binding to retinoid acid receptors. J
Invest Dermatol. 115:321–327. 2000.PubMed/NCBI View Article : Google Scholar
|
7
|
Melnik BC: Apoptosis may explain the
pharmacological mode of action and adverse effects of isotretinoin,
including teratogenicity. Acta Derm Venereol. 97:173–181.
2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Nelson AM, Gilliland KL, Cong Z and
Thiboutot DM: 13-cis Retinoic acid induces apoptosis and cell cycle
arrest in human SEB-1 sebocytes. J Invest Dermatol. 126:2178–2189.
2006.PubMed/NCBI View Article : Google Scholar
|
9
|
Nelson AM, Cong Z, Gilliland KL and
Thiboutot DM: TRAIL contributes to the apoptotic effect of 13-cis
retinoic acid in human sebaceous gland cells. Br J Dermatol.
165:526–533. 2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Nelson AM, Zhao W, Gilliland KL, Zaenglein
AL, Liu W and Thiboutot DM: Neutrophil gelatinase-associated
lipocalin mediates 13-cis retinoic acid-induced apoptosis of human
sebaceous gland cells. J Clin Invest. 118:1468–1478.
2008.PubMed/NCBI View
Article : Google Scholar
|
11
|
Kelhälä HL, Fyhrquist N, Palatsi R,
Lehtimäki S, Väyrynen JP, Kubin ME, Kallioinen M, Alenius H,
Tasanen K and Lauerma A: Isotretinoin treatment reduces acne
lesions but not directly lesional acne inflammation. Exp Dermatol.
25:477–478. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
MacFarlane M: TRAIL-induced signaling and
apoptosis. Toxicol Lett. 139:89–97. 2003.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhang X, Tang N, Hadden TJ and Rishi AK:
Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta.
1813:1978–1986. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Modur V, Nagarajan R, Evers BM and
Milbrandt J: FOXO proteins regulate tumor necrosis factor-related
apoptosis inducing ligand expression. Implications for PTEN
mutation in prostate cancer. J Biol Chem. 277:47928–47937.
2002.PubMed/NCBI View Article : Google Scholar
|
15
|
Melnik BC and Zouboulis CC: Potential role
of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced
acne. Exp Dermatol. 22:311–315. 2013.PubMed/NCBI View Article : Google Scholar
|
16
|
Mirdamadi Y, Thielitz A, Wiede A, Goihl A,
Papakonstantinou E, Hartig R, Zouboulis CC, Reinhold D, Simeoni L,
Bommhardt U, et al: Insulin and insulin-like growth factor-1 can
modulate the phosphoinositide-3-kinase/Akt/FoxO1 pathway in SZ95
sebocytes in vitro. Mol Cell Endocrinol. 415:32–44. 2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Agamia NF, Abdallah DM, Sorour O, Morad B
and Younan DY: Skin expression of mammalian target of rapamycin and
forkhead box transcription factor O1, and serum insulin-like growth
factor-1 in patients with acne vulgaris and their relationship with
diet. Br J Dermatol. 174:1299–1307. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Sørensen K, Aksglaede L, Petersen JH,
Andersson AM and Juul A: Serum IGF1 and insulin levels in girls
with normal and precocious puberty. Eur J Endocrinol. 166:903–910.
2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Melnik BC: Diet in acne: Further evidence
for the role of nutrient signaling in acne pathogenesis. Acta Derm
Venereol. 92:228–231. 2012.PubMed/NCBI View Article : Google Scholar
|
20
|
Gross DN, Wan M and Birnbaum MJ: The role
of FOXO in the regulation of metabolism. Curr Diab Rep. 9:208–214.
2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang Y, Zhou Y and Graves DT: FOXO
transcription factors: Their clinical significance and regulation.
Biomed Res Int. 2014(925350)2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Gudas LJ and Wagner JA: Retinoids regulate
stem cell differentiation. J Cell Physiol. 226:322–330.
2011.PubMed/NCBI View Article : Google Scholar
|
23
|
Kim MJ, Ahn K, Park SH, Kang HJ, Jang BG,
Oh SJ, Oh SM, Jeong YJ, Heo JI, Suh JG, et al: SIRT1 regulates
tyrosine hydroxylase expression and differentiation of
neuroblastoma cells via FOXO3a. FEBS Lett. 583:1183–1188.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Sakoe Y, Sakoe K, Kirito K, Ozawa K and
Komatsu N: FOXO3A as a key molecule for all-trans retinoic
acid-induced granulocytic differentiation and apoptosis in acute
promyelocytic leukemia. Blood. 115:3787–3795. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Van Der Heide LP, Hoekman MF and Smidt MP:
The ins and outs of FoxO shuttling: Mechanisms of FoxO
translocation and transcriptional regulation. Biochem J.
380:297–309. 2004.PubMed/NCBI View Article : Google Scholar
|
26
|
Baxter RC: Nuclear actions of insulin-like
growth factor binding protein-3. Gene. 569:7–13. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Schedlich LJ, Graham LD, O'Han MK,
Muthukaruppan A, Yan X, Firth SM and Baxter RC: Molecular basis of
the interaction between IGFBP-3 and retinoid X receptor: Role in
modulation of RAR-signaling. Arch Biochem Biophys. 465:359–369.
2007.PubMed/NCBI View Article : Google Scholar
|
28
|
Liu B, Lee HY, Weinzimer SA, Powell DR,
Clifford JL, Kurie JM and Cohen P: Direct functional interactions
between insulin-like growth factor-binding protein-3 and retinoid X
receptor-alpha regulate transcriptional signaling and apoptosis. J
Biol Chem. 275:33607–33613. 2000.PubMed/NCBI View Article : Google Scholar
|
29
|
Cyrulnik AA, Viola KV, Gewirtzman AJ and
Cohen SR: High-dose isotretinoin in acne vulgaris: Improved
treatment outcomes and quality of life. Int J Dermatol.
51:1123–1130. 2012.PubMed/NCBI View Article : Google Scholar
|
30
|
https://www.dermatologyadvisor.com/home/topics/acne/comparison-of-acne-treatment-protocols-with-isotretinoin/.
Accessed May 28, 2020.
|
31
|
American Academy of Dermatology
Association. Acne Clinical Guideline. https://www.aad.org/practicecenter/quality/clinical-guidelines/acne/isotretinoin.
|
32
|
Henry D, Dormuth C, Winquist B, Carney G,
Bugden S, Teare G, Lévesque LE, Bérard A, Paterson JM and Platt RW:
CNODES (Canadian Network for Observational Drug Effect Studies)
Investigators. Occurrence of pregnancy and pregnancy outcomes
during isotretinoin therapy. CMAJ. 188:723–730. 2016.PubMed/NCBI View Article : Google Scholar
|
33
|
Simin MK and Nagesh M: Pregnancy
prevention programs for medications used in dermatology. J Skin Sex
Transm Dis. 2:18–25. 2020.
|
34
|
Brinker A, Kornegay C and Nourjah P:
Trends in adherence to a revised risk management program designed
to decrease or eliminate isotretinoin-exposed pregnancies:
Evaluation of the accutane SMART program. Arch Dermatol.
141:563–569. 2005.PubMed/NCBI View Article : Google Scholar
|
35
|
Cheetham TC, Wagner RA, Chiu G, Day JM,
Yoshinaga MA and Wong L: A risk management program aimed at
preventing fetal exposure to isotretinoin: Retrospective cohort
study. J Am Acad Dermatol. 55:442–448. 2006.PubMed/NCBI View Article : Google Scholar
|
36
|
Shin J, Cheetham TC, Wong L, Niu F, Kass
E, Yoshinaga MA, Sorel M, McCombs JS and Sidney S: The impact of
the iPLEDGE program on isotretinoin fetal exposure in an integrated
health care system. J Am Acad Dermatol. 65:1117–1125.
2011.PubMed/NCBI View Article : Google Scholar
|
37
|
Tkachenko E, Singer S, Sharma P, Barbieri
J and Mostaghimi A: US food and drug administration reports of
pregnancy and pregnancy-related adverse events associated with
isotretinoin. JAMA Dermatol. 155:1175–1179. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Layton AM, Dreno B, Gollnick HP and
Zouboulis CC: A review of the European Directive for prescribing
systemic isotretinoin for acne vulgaris. J Eur Acad Dermatol
Venereol. 20:773–776. 2006.PubMed/NCBI View Article : Google Scholar
|
39
|
Salih LA: Histological study of the
isotretinoin drug effect on the intrauterine prenatal development
in the pregnant mice. Iraqi J Sci. 58:1601–1608. 2017.
|
40
|
Bispo ACC, Galvão TC, Tamoyese VM, Costa
GA, Ramos SP and Salles MJS: Effects of isotretinoin on the
reproduction of pubertal male mice and malformations in the
offspring. Am J Biomed Sci. 9:225–236. 2017.
|
41
|
Kumar P, Das A, Lal NR, Jain S and Ghosh
A: Safety of important dermatological drugs (retinoids, immune
suppressants, anti androgens and thalidomide) in reproductively
active males with respect to pregnancy outcome: A brief review of
literature. Indian J Dermatol Venereol Leprol. 84:539–546.
2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Coberly S, Lammer E and Alashari M:
Retinoic acid embryopathy: Case report and review of literature.
Pediatr Pathol Lab Med. 16:823–836. 1996.PubMed/NCBI
|
43
|
Lammer EJ, Chen DT, Hoar RM, Agnish ND,
Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW Jr, Lott IT, et
al: Retinoic acid embryopathy. N Engl J Med. 313:837–841.
1985.PubMed/NCBI View Article : Google Scholar
|
44
|
Lynburg MC, Khoury MJ, Lammer EJ, Waller
KO, Codero JF and Erickson JD: Sensitivity, specificity, and
positive predictive value of multiple malformations in isotretinoin
embryopathy surveillance. Teratology. 42:513–519. 1990.PubMed/NCBI View Article : Google Scholar
|
45
|
Fernhoff PM and Lammer EJ: Craniofacial
features of isotretinoin embryopathy. J Pediatr. 105:595–597.
1984.PubMed/NCBI View Article : Google Scholar
|
46
|
Miura M: Apoptotic and non-apoptotic
caspase functions in neural development. Neurochem Res.
36:1253–1260. 2011.PubMed/NCBI View Article : Google Scholar
|
47
|
Yamaguchi Y and Miura M: Programmed cell
death in neurodevelopment. Dev Cell. 32:478–490. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Smith SM, Garic A, Flentke GR and Berres
ME: Neural crest development in fetal alcohol syndrome. Birth
Defects Res C Embryo Today. 102:210–220. 2014.PubMed/NCBI View Article : Google Scholar
|
49
|
Williams SS, Mear JP, Liang HC, Potter SS,
Aronow BJ and Colbert MC: Large-scale reprogramming of cranial
neural crest gene expression by retinoic acid exposure. Physiol
Genomics. 19:184–197. 2004.PubMed/NCBI View Article : Google Scholar
|
50
|
Wang L, Mear JP, Kuan CY and Colbert MC:
Retinoic acid induces CDK inhibitors and growth arrest specific
(Gas) genes in neural crest cells. Dev Growth Differ. 47:119–130.
2005.PubMed/NCBI View Article : Google Scholar
|
51
|
Johnston MC and Bronsky PT: Animal models
for human craniofacial malformations. J Craniofac Genet Dev Biol.
11:277–291. 1991.PubMed/NCBI
|
52
|
Watanabe T, Goulding EH and Pratt RM:
Alterations in craniofacial growth induced by isotretinoin
(13-cis-retinoic acid) in mouse whole embryo and primary
mesenchymal cell culture. J Craniofac Genet Dev Biol. 8:21–33.
1988.PubMed/NCBI
|
53
|
Lammer EJ and Armstrong DL: Malformations
in hindbrain structures among humans exposed to isotretinoin
(13-cis-retinoic acid) during early embryogenesis. In: Retinoids in
Normal Development and Teratogenesis. Morriss-Kay G (ed). Oxford
University Press, New York, pp281-295, 1991.
|
54
|
Shuler CF: Programmed cell death and cell
transformation in craniofacial development. Crit Rev Oral Biol Med.
6:202–217. 1995.PubMed/NCBI View Article : Google Scholar
|
55
|
Fisher SA, Langille BL and Srivastava D:
Apoptosis during cardiovascular development. Circ Res. 87:856–864.
2000.PubMed/NCBI View Article : Google Scholar
|
56
|
Pan J and Baker KM: Retinoic acid and the
heart. Vitam Horm. 75:257–283. 2007.PubMed/NCBI View Article : Google Scholar
|
57
|
Xavier-Neto J, Rosenthal N, Silva FA,
Matos TG, Hochgreb T and Linhares VL: Retinoid signaling and
cardiac anteroposterior segmentation. Genesis. 31:97–104.
2001.PubMed/NCBI View Article : Google Scholar
|
58
|
Niederreither K, Vermot J, Messaddeq N,
Schuhbaur B, Chambon P and Dollé P: Embryonic retinoic acid
synthesis is essential for heart morphogenesis in the mouse.
Development. 128:1019–1031. 2001.PubMed/NCBI
|