1
|
Bhawana Basniwal RK, Buttar HS, Jain VK
and Jain N: Curcumin nanoparticles: preparation, characterization,
and antimicrobial study. J Agric Food Chem. 59:2056–2061.
2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Tsuda T: Curcumin as a functional
food-derived factor: Degradation products, metabolites,
bioactivity, and future perspectives. Food Funct. 9:705–714.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Daily JW, Yang M and Park S: Efficacy of
turmeric extracts and curcumin for alleviating the symptoms of
joint arthritis: A systematic review and meta-analysis of
randomized clinical trials. J Med Food. 19:717–729. 2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Hussain Z, Thu HE, Amjad MW, Hussain F,
Ahmed TA and Khan S: Exploring recent developments to improve
antioxidant, anti-inflammatory and antimicrobial efficacy of
curcumin: A review of new trends and future perspectives. Mater Sci
Eng C. 77:1316–1326. 2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Yue GG, Kwok HF, Lee JK, Jiang L, Wong EC,
Gao S, Wong HL, Li L, Chan KM, Leung PC, et al: Combined therapy
using bevacizumab and turmeric ethanolic extract (with absorbable
curcumin) exhibited beneficial efficacy in colon cancer mice.
Pharmacol Res. 111:43–57. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhang X, Wu J, Ye B, Wang Q, Xie X and
Shen H: Protective effect of curcumin on TNBS-induced intestinal
inflammation is mediated through the JAK/STAT pathway. BMC
Complement Altern Med. 16(299)2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Murphy EA, Davis JM, McClellan JL, Gordon
BT and Carmichael MD: Curcumin's effect on intestinal inflammation
and tumorigenesis in the ApcMin/+ mouse. J Interferon
Cytokine Res. 31:219–226. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Roberts JL, Poklepovic A and Booth L:
Curcumin interacts with sildenafil to kill GI tumor cells via
endoplasmic reticulum stress and reactive oxygen/ nitrogen species.
Oncotarget. 8:99451–99469. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Yu J, Xu WH, Sun W, Sun Y, Guo ZL and Yu
XL: Curcumin alleviates the functional gastrointestinal disorders
of mice in vivo. J Med Food. 20:1176–1183. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Garella R, Squecco R and Baccari MC:
Site-related effects of relaxin in the gastrointestinal tract
through nitric oxide signaling: An updated report. Curr Protein
Pept Sci. 18:1254–1262. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Eglen RM: Muscarinic receptors and
gastrointestinal tract smooth muscle function. Life Sci.
68:2573–2578. 2001.PubMed/NCBI View Article : Google Scholar
|
12
|
Kaji N, Nakayama S, Horiguchi K, Iino S,
Ozaki H and Hori M: Disruption of the pacemaker activity of
interstitial cells of Cajal via nitric oxide contributes to
postoperative ileus. Neurogastroenterol Motil.
30(13334)2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Sung TS, Hwang SJ, Koh SD, Bayguinov Y,
Peri LE, Blair PJ, Webb TI, Pardo DM, Rock JR, Sanders KM, et al:
The cells and conductance mediating cholinergic neurotransmission
in the murine proximal stomach. J Physiol. 596:1549–1574.
2018.PubMed/NCBI View
Article : Google Scholar
|
14
|
Al-Shboul OA: The importance of
interstitial cells of cajal in the gastrointestinal tract. Saudi J
Gastroenterol. 19:3–15. 2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Iino S, Ward SM and Sanders KM:
Interstitial cells of Cajal are functionally innervated by
excitatory motor neurones in the murine intestine. J Physiol.
556:521–530. 2004.PubMed/NCBI View Article : Google Scholar
|
16
|
Rumessen JJ and Thuneberg L: Pacemaker
cells in the gastrointestinal tract: Interstitial cells of Cajal.
Scand J Gastroenterol Suppl. 216:82–94. 1996.PubMed/NCBI View Article : Google Scholar
|
17
|
Chang IY, Glasgow NJ, Takayama I,
Horiguchi K, Sanders KM and Ward SM: Loss of interstitial cells of
Cajal and development of electrical dysfunction in murine small
bowel obstruction. J Physiol. 536:555–568. 2001.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang TH, Angeli TR, Ishida S, Du P,
Gharibans A, Paskaranandavadivel N, Imai Y, Miyagawa T, Abell TL,
Farrugia G, et al: The influence of interstitial cells of Cajal
loss and aging on slow wave conduction velocity in the human
stomach. Physiol Rep. 8(e14659)2021.PubMed/NCBI View Article : Google Scholar
|
19
|
Sanders KM: Spontaneous electrical
activity and rhythmicity in gastrointestinal smooth muscles. Adv
Exp Med Biol. 1124:3–46. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Tamada H and Kiyama H: Existence of c-Kit
negative cells with ultrastructural features of interstitial cells
of Cajal in the subserosal layer of the W/W(v) mutant mouse colon.
J Smooth Muscle Res. 51:1–9. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Tan YY, Ji ZL, Zhao G, Jiang JR, Wang D
and Wang JM: Decreased SCF/c-kit signaling pathway contributes to
loss of interstitial cells of Cajal in gallstone disease. Int J
Clin Exp Med. 7:4099–4106. 2014.PubMed/NCBI
|
22
|
Ren H, Han J, Li Z and Xiong Z: Stem cell
factor/kit signal insufficiency contributes to hypoxia-induced
intestinal motility dysfunctions in neonatal mice. Dig Dis Sci.
62:1193–1203. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR,
Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG,
Kendrick ML, et al: Ano1 is a selective marker of interstitial
cells of Cajal in the human and mouse gastrointestinal tract. Am J
Physiol Gastrointest Liver Physiol. 296:G1370–G1381.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Drumm BT, Hennig GW, Battersby MJ,
Cunningham EK, Sung TS, Ward SM, Sanders KM and Baker SA:
Clustering of Ca2+ transients in interstitial cells of
Cajal defines slow wave duration. J Gen Physiol. 149:703–725.
2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Nemeth L, Maddur S and Puri P:
Immunolocalization of the gap junction protein Connexin43 in the
interstitial cells of Cajal in the normal and Hirschsprung's
disease bowel. J Pediatr Surg. 35:823–828. 2000.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhang G, Xie S, Hu W, Liu Y, Liu M, Liu M
and Chang X: Effects of electroacupuncture on interstitial cells of
Cajal (ICC) ultrastructure and Connexin 43 protein expression in
the gastrointestinal tract of functional dyspepsia (FD) rats. Med
Sci Monit. 22:2021–2027. 2016.PubMed/NCBI View Article : Google Scholar
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
28
|
Somchit M, Changtam C, Kimseng R, Utaipan
T, Lertcanawanichakul M, Suksamrarn A and Chunglok W:
Demethoxycurcumin from Curcuma longa rhizome suppresses iNOS
induction in an in vitro inflamed human intestinal mucosa model.
Asian Pac J Cancer Prev. 15:1807–1810. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Dai C, Li B, Zhou Y, Li D, Zhang S, Li H,
Xiao X and Tang S: Curcumin attenuates quinocetone induced
apoptosis and inflammation via the opposite modulation of Nrf2/HO-1
and NF-κB pathway in human hepatocyte L02 cells. Food Chem Toxicol.
95:52–63. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Ben P, Liu J, Lu C, Xu Y, Xin Y, Fu J,
Huang H, Zhang Z, Gao Y, Luo L, et al: Curcumin promotes
degradation of inducible nitric oxide synthase and suppresses its
enzyme activity in RAW 264.7 cells. Int Immunopharmacol.
11:179–186. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Li M, Wang L, Liu H, Su B, Liu B, Lin W,
Li Z and Chang L: Curcumin inhibits HeLa cell invasion and
migration by decreasing inducible nitric oxide synthase. Nan Fang
Yi Ke Da Xue Xue Bao. 33:1752–1756. 2013.PubMed/NCBI(In Chinese).
|
32
|
Trang A and Khandhar PB: Physiology,
Acetylcholinesterase. StatPearls, 2020. https://www.ncbi.nlm.nih.gov/books/NBK539735/.
Accessed July 10, 2020.
|
33
|
Cresnar B, Crne-Finderle N, Breskvar K and
Sketelj J: Neural regulation of muscle acetylcholinesterase is
exerted on the level of its mRNA. J Neurosci Res. 38:294–299.
1994.PubMed/NCBI View Article : Google Scholar
|
34
|
Abu-Taweel GM: Effects of curcumin on the
social behavior, blood composition, reproductive hormones in plasma
and brain acetylcholinesterase in cadmium intoxicated mice. Saudi J
Biol Sci. 23:219–228. 2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Liu ZJ, Li ZH, Liu L, Tang WX, Wang Y,
Dong MR and Xiao C: Curcumin attenuates beta-amyloid-induced
neuroinflammation via activation of peroxisome
proliferator-activated receptor-gamma function in a rat model of
Alzheimer's disease. Front Pharmacol. 7(261)2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Cruz-Correa M, Hylind LM, Marrero JH,
Zahurak ML, Murray-Stewart T, Casero RA Jr, Montgomery EA,
Iacobuzio-Donahue C, Brosens LA, Offerhaus GJ, et al: Efficacy and
safety of curcumin in treatment of intestinal adenomas in patients
with familial adenomatous polyposis. Gastroenterology. 155:668–673.
2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Sharma RA, McLelland HR, Hill KA, Ireson
CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ and
Steward WP: Pharmacodynamic and pharmacokinetic study of oral
Curcuma extract in patients with colorectal cancer. Clin
Cancer Res. 7:1894–1900. 2001.PubMed/NCBI
|
38
|
Wang L, Li W, Cheng D, Guo Y, Wu R, Yin R,
Li S, Kuo HC, Hudlikar R, Yang H, et al: Pharmacokinetics and
pharmacodynamics of three oral formulations of curcumin in rats. J
Pharmacokinet Pharmacodyn. 47:131–144. 2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Lao CD, Ruffin MT IV, Normolle D, Heath
DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL and Brenner
DE: Dose escalation of a curcuminoid formulation. BMC Complement
Altern Med. 6(10)2006.PubMed/NCBI View Article : Google Scholar
|
40
|
Kurniawansyah F, Quachie L, Mammucari R
and Foster NR: Improving the dissolution properties of curcumin
using dense gas antisolvent technology. Int J Pharm. 521:239–248.
2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Peng S, Li Z, Zou L, Liu W, Liu C and
McClements DJ: Improving curcumin solubility and bioavailability by
encapsulation in saponin-coated curcumin nanoparticles prepared
using a simple pH-driven loading method. Food Funct. 9:1829–1839.
2018.PubMed/NCBI View Article : Google Scholar
|