1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Barata PC and Rini BI: Treatment of renal
cell carcinoma: Current status and future directions. CA Cancer J
Clin. 67:507–524. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Linehan WM, Srinivasan R and Schmidt LS:
The genetic basis of kidney cancer: A metabolic disease. Nat Rev
Urol. 7:277–285. 2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Hsieh JJ, Purdue MP, Signoretti S, Swanton
C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal
cell carcinoma. Nat Rev Dis Primers. 3(17009)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Choueiri TK and Motzer RJ: Systemic
therapy for metastatic renal-cell carcinoma. N Engl J Med.
376:354–366. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Yu KJ, Keskin SK, Meissner MA, Petros FG,
Wang X, Borregales LD, Gu C, Tamboli P, Matin SF, Wood CG and Karam
JA: Renal cell carcinoma and pathologic nodal disease: Implications
for American joint committee on cancer staging. Cancer.
124:4023–4031. 2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Bazzi WM, Sjoberg DD, Feuerstein MA,
Maschino A, Verma S, Bernstein M, O'Brien MF, Jang T, Lowrance W,
Motzer RJ and Russo P: Long-term survival rates after resection for
locally advanced kidney cancer: Memorial Sloan kettering cancer
center 1989 to 2012 experience. J Urol. 193:1911–1916.
2015.PubMed/NCBI View Article : Google Scholar
|
9
|
Tannir NM, Pal SK and Atkins MB:
Second-line treatment landscape for renal cell carcinoma: A
comprehensive review. Oncologist. 23:540–555. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Stacker SA, Williams SP, Karnezis T,
Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic
vessel remodelling in cancer. Nat Rev Cancer. 14:159–172.
2014.PubMed/NCBI View
Article : Google Scholar
|
11
|
Padera TP, Kadambi A, di Tomaso E,
Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark
EJ, et al: Lymphatic metastasis in the absence of functional
intratumor lymphatics. Science. 296:1883–1886. 2002.PubMed/NCBI View Article : Google Scholar
|
12
|
Lala PK, Nandi P and Majumder M: Roles of
prostaglandins in tumor-associated lymphangiogenesis with special
reference to breast cancer. Cancer Metastasis Rev. 37:369–384.
2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Karaman S and Detmar M: Mechanisms of
lymphatic metastasis. J Clin Invest. 124:922–928. 2014.PubMed/NCBI View
Article : Google Scholar
|
14
|
Yu P, Wu G, Lee HW and Simons M:
Endothelial metabolic control of lymphangiogenesis. Bioessays.
40(e1700245)2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Alitalo K, Tammela T and Petrova TV:
Lymphangiogenesis in development and human disease. Nature.
438:946–953. 2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Beasley NJ, Prevo R, Banerji S, Leek RD,
Moore J, van Trappen P, Cox G, Harris AL and Jackson DG:
Intratumoral lymphangiogenesis and lymph node metastasis in head
and neck cancer. Cancer Res. 62:1315–1320. 2002.PubMed/NCBI
|
17
|
Dadras SS, Paul T, Bertoncini J, Brown LF,
Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC and Detmar
M: Tumor lymphangiogenesis: A novel prognostic indicator for
cutaneous melanoma metastasis and survival. Am J Pathol.
162:1951–1960. 2003.PubMed/NCBI View Article : Google Scholar
|
18
|
Nathanson SD: Insights into the mechanisms
of lymph node metastasis. Cancer. 98:413–423. 2003.PubMed/NCBI View Article : Google Scholar
|
19
|
Chen JC, Chang YW, Hong CC, Yu YH and Su
JL: The role of the VEGF-C/VEGFRs axis in tumor progression and
therapy. Int J Mol Sci. 14:88–107. 2012.PubMed/NCBI View Article : Google Scholar
|
20
|
Garnier L, Gkountidi AO and Hugues S:
Tumor-associated lymphatic vessel features and immunomodulatory
functions. Front Immunol. 10(720)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Su JL, Yen CJ, Chen PS, Chuang SE, Hong
CC, Kuo IH, Chen HY, Hung MC and Kuo ML: The role of the
VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer. 96:541–545.
2007.PubMed/NCBI View Article : Google Scholar
|
22
|
Wang J, Huang Y, Zhang J, Wei Y, Mahoud S,
Bakheet AM, Wang L, Zhou S and Tang J: Pathway-related molecules of
VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic
metastasis. Clin Chim Acta. 461:165–171. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Takahashi S: Vascular endothelial growth
factor (VEGF), VEGF receptors and their inhibitors for
antiangiogenic tumor therapy. Biol Pharm Bull. 34:1785–1788.
2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Tacconi C, Correale C, Gandelli A,
Spinelli A, Dejana E, D'Alessio S and Danese S: Vascular
endothelial growth factor C disrupts the endothelial lymphatic
barrier to promote colorectal cancer invasion. Gastroenterology.
148:1438–1451.e8. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Moch H, Cubilla AL, Humphrey PA, Reuter VE
and Ulbright TM: The 2016 WHO classification of tumours of the
urinary system and male genital organs-part A: Renal, penile, and
testicular tumours. Eur Urol. 70:93–105. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Howard GE and Wood CG: Staging refinements
in renal cell carcinoma. Curr Opin Urol. 16:317–320.
2006.PubMed/NCBI View Article : Google Scholar
|
27
|
Volm M, Koomagi R and Mattern J:
Prognostic value of vascular endothelial growth factor and its
receptor Flt-1 in squamous cell lung cancer. Int J Cancer.
74:64–68. 1997.PubMed/NCBI View Article : Google Scholar
|
28
|
Weidner N, Semple JP, Welch WR and Folkman
J: Tumor angiogenesis and metastasis-correlation in invasive breast
carcinoma. N Engl J Med. 324:1–8. 1991.PubMed/NCBI View Article : Google Scholar
|
29
|
Schwager S and Detmar M: Inflammation and
lymphatic function. Front Immunol. 10(308)2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Yamakawa M, Doh SJ, Santosa SM, Montana M,
Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, et al:
Potential lymphangiogenesis therapies: Learning from current
antiangiogenesis therapies-a review. Med Res Rev. 38:1769–1798.
2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Joukov V, Pajusola K, Kaipainen A, Chilov
D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N and Alitalo K: A
novel vascular endothelial growth factor, VEGF-C, is a ligand for
the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.
EMBO J. 15:290–298. 1996.PubMed/NCBI
|
32
|
Kukk E, Lymboussaki A, Taira S, Kaipainen
A, Jeltsch M, Joukov V and Alitalo K: VEGF-C receptor binding and
pattern of expression with VEGFR-3 suggests a role in lymphatic
vascular development. Development. 122:3829–3837. 1996.PubMed/NCBI
|
33
|
Katsuta M, Miyashita M, Makino H, Nomura
T, Shinji S, Yamashita K, Tajiri T, Kudo M, Ishiwata T and Naito Z:
Correlation of hypoxia inducible factor-1alpha with lymphatic
metastasis via vascular endothelial growth factor-C in human
esophageal cancer. Exp Mol Pathol. 78:123–130. 2005.PubMed/NCBI View Article : Google Scholar
|
34
|
Oliver G: Lymphatic vasculature
development. Nat Rev Immunol. 4:35–45. 2004.PubMed/NCBI View
Article : Google Scholar
|
35
|
Jacquemier J, Mathoulin-Portier MP,
Valtola R, Charafe-Jauffret E, Geneix J, Houvenaeghel G, Puig B,
Bardou VJ, Hassoun J, Viens P and Birnbaum D: Prognosis of
breast-carcinoma lymphagenesis evaluated by immunohistochemical
investigation of vascular-endothelial-growth-factor receptor 3. Int
J Cancer. 89:69–73. 2000.PubMed/NCBI View Article : Google Scholar
|
36
|
Kinashi H, Ito Y, Sun T, Katsuno T and
Takei Y: Roles of the TGF-β-VEGF-C pathway in fibrosis-related
lymphangiogenesis. Int J Cancer. 19(2487)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Kaiserling E: Immunohistochemical
identification of lymph vessels with D2-40 in diagnostic pathology.
Pathologe. 25:362–374. 2004.PubMed/NCBI View Article : Google Scholar : (In German).
|
38
|
Zavyalova MV, Denisov EV, Tashireva LA,
Savelieva OE, Kaigorodova EV, Krakhmal NV and Perelmuter VM:
Intravasation as a key step in cancer metastasis. Biochemistry
(Mosc). 84:762–772. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Tammela T, He Y, Lyytikka J, Jeltsch M,
Markkanen J, Pajusola K, Ylä-Herttuala S and Alitalo K: Distinct
architecture of lymphatic vessels induced by chimeric vascular
endothelial growth factor-C/vascular endothelial growth factor
heparin-binding domain fusion proteins. Circ Res. 100:1468–1475.
2007.PubMed/NCBI View Article : Google Scholar
|
40
|
Leu AJ, Berk DA, Lymboussaki A, Alitalo K
and Jain RK: Absence of functional lymphatics within a murine
sarcoma: A molecular and functional evaluation. Cancer Res.
60:4324–4327. 2000.PubMed/NCBI
|
41
|
Ruddell A, Harrell MI, Minoshima S,
Maravilla KR, Iritani BM, White SW and Partridge SC: Dynamic
contrast-enhanced magnetic resonance imaging of tumor-induced lymph
flow. Neoplasia. 10:706–713. 2008.PubMed/NCBI View Article : Google Scholar
|
42
|
Li J, Xie Y, Wang X, Jiang C, Yuan X,
Zhang A, Liu C, Pang L, Li F and Hu J: Overexpression of VEGF-C and
MMP-9 predicts poor prognosis in Kazakh patients with esophageal
squamous cell carcinoma. PeerJ. 7(e8182)2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Chen H, Guan R, Lei Y, Chen J, Ge Q, Zhang
X, Dou R, Chen H, Liu H, Qi X, et al: Lymphangiogenesis in gastric
cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer.
15(103)2015.PubMed/NCBI View Article : Google Scholar
|
44
|
Tammela T, Zarkada G, Wallgard E,
Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M,
Schomber T, Peltonen R, et al: Blocking VEGFR-3 suppresses
angiogenic sprouting and vascular network formation. Nature.
454:656–660. 2008.PubMed/NCBI View Article : Google Scholar
|
45
|
Ma Q, Dieterich LC and Detmar M: Multiple
roles of lymphatic vessels in tumor progression. Curr Opin Immunol.
53:7–12. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Voss M, Steidler A, Grobholz R, Weiss C,
Alken P, Michel MS and Trojan L: The lymphatic system and its
specific growth factor vascular endothelial growth factor C in
kidney tissue and in renal cell carcinoma. BJU Int. 104:94–99.
2009.PubMed/NCBI View Article : Google Scholar
|
47
|
Yue H, Wang J, Chen R, Hou X, Li J and Lu
X: Gene signature characteristic of elevated stromal infiltration
and activation is associated with increased risk of hematogenous
and lymphatic metastasis in serous ovarian cancer. BMC Cancer.
19(1266)2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Ma Q, Dieterich LC, Ikenberg K, Bachmann
SB, Mangana J, Proulx ST, Amann VC, Levesque MP, Dummer R, Baluk P,
et al: Unexpected contribution of lymphatic vessels to promotion of
distant metastatic tumor spread. Sci Adv.
4(eaat4758)2018.PubMed/NCBI View Article : Google Scholar
|