1
|
Brueck M, Koerholz D, Nuernberger W,
Juergens H, Goebel U and Wahn V: Elimination of l-asparaginase in
children treated for acute lymphoblastic leukemia. Dev Pharmacol
Ther. 12:200–204. 1989.PubMed/NCBI
|
2
|
Roth GA, Mensah GA, Johnson CO, Addolorato
G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ,
Benziger CP, et al: Global burden of cardiovascular diseases and
risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll
Cardiol. 76:2982–3021. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
Dang H, Ye Y, Zhao X and Zeng Y:
Identification of candidate genes in ischemic cardiomyopathy by
gene expression omnibus database. BMC Cardiovasc Disord.
20(320)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Dixon SR, Henriques JP, Mauri L, Sjauw K,
Civitello A, Kar B, Loyalka P, Resnic FS, Teirstein P, Makkar R, et
al: A prospective feasibility trial investigating the use of the
Impella 2.5 system in patients undergoing high-risk percutaneous
coronary intervention (The PROTECT I Trial): Initial U.S.
experience. JACC Cardiovasc Interv. 2:91–96. 2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Henriques JP, Remmelink M, Baan J Jr, van
der Schaaf RJ, Vis MM, Koch KT, Scholten EW, de Mol BA, Tijssen JG,
Piek JJ and de Winter RJ: Safety and feasibility of elective
high-risk percutaneous coronary intervention procedures with left
ventricular support of the Impella recover LP 2.5. Am J Cardiol.
97:990–992. 2006.PubMed/NCBI View Article : Google Scholar
|
6
|
Kiyooka T and Satoh Y: Mid-ventricular
obstructive hypertrophic cardiomyopathy with an apical aneurysm
caused by vasospastic angina. Tokai J Exp Clin Med. 39:29–33.
2014.PubMed/NCBI
|
7
|
Fanari Z, Abraham N, Hammami S and Qureshi
WA: High-risk acute coronary syndrome in a patient with coronary
subclavian steal syndrome secondary to critical subclavian artery
stenosis. Case Rep Cardiol. 2014(175235)2014.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang X, Chen J and Huang X: Rosuvastatin
attenuates myocardial ischemia-reperfusion injury via upregulating
miR-17-3p-mediated autophagy. Cell Reprogram. 21:323–330.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Bulluck H and Hausenloy DJ: Ischaemic
conditioning: Are we there yet? Heart. 101:1067–1077.
2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Hausenloy DJ and Yellon DM: Myocardial
ischemia-reperfusion injury: A neglected therapeutic target. J Clin
Invest. 123:92–100. 2013.PubMed/NCBI View
Article : Google Scholar
|
11
|
Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng
YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in
ischemia and reperfusion injury. Cell Physiol Biochem.
46:1650–1667. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Ziegler M, Wang X and Peter K: Platelets
in cardiac ischaemia/reperfusion injury: A promising therapeutic
target. Cardiovasc Res. 115:1178–1188. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Fanari Z, Weiss S and Weintraub WS: Cost
effectiveness of antiplatelet and antithrombotic therapy in the
setting of acute coronary syndrome: Current perspective and
literature review. Am J Cardiovasc Drugs. 15:415–427.
2015.PubMed/NCBI View Article : Google Scholar
|
14
|
World Health Organization. The top 10
causes of death. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.
WHO website, 2018.
|
15
|
Huang ZQ, Xu W, Wu JL, Lu X and Chen XM:
MicroRNA-374a protects against myocardial ischemia-reperfusion
injury in mice by targeting the MAPK6 pathway. Life Sci.
232(116619)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Xie B, Liu X, Yang J, Cheng J, Gu J and
Xue S: PIAS1 protects against myocardial ischemia-reperfusion
injury by stimulating PPARγ SUMOylation. BMC Cell Biol.
19(24)2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Liang S, Ping Z and Ge J: Coenzyme Q10
regulates antioxidative stress and autophagy in acute myocardial
ischemia-reperfusion injury. Oxid Med Cell Longev.
2017(9863181)2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Chen S, Zhu Q, Ju H, Hao J, Lai Z, Zou C,
Zhang W, Zhao S, Chen X, Zhang H, et al: The role of oxygen free
radicals in myocardial ischemia/reperfusion injury. Chin Med Sci J.
6:127–131. 1991.PubMed/NCBI
|
19
|
Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin
D, Xing J and Wang X: Pretreatment with Tilianin improves
mitochondrial energy metabolism and oxidative stress in rats with
myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha
signaling pathway. J Pharmacol Sci. 139:352–360. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Grøvdal LM, Stang E, Sorkin A and Madshus
IH: Direct interaction of Cbl with pTyr 1045 of the EGF receptor
(EGFR) is required to sort the EGFR to lysosomes for degradation.
Exp Cell Res. 300:388–395. 2004.PubMed/NCBI View Article : Google Scholar
|
21
|
Schmidt MHH and Dikic I: The Cbl
interactome and its functions. Nat Rev Mol Cell Biol. 6:907–918.
2005.PubMed/NCBI View
Article : Google Scholar
|
22
|
Wu WJ, Tu S and Cerione RA: Activated
Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell.
114:715–725. 2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Swaminathan G and Tsygankov AY: The Cbl
family proteins: Ring leaders in regulation of cell signaling. J
Cell Physiol. 209:21–43. 2006.PubMed/NCBI View Article : Google Scholar
|
24
|
Rafiq K, Kolpakov MA, Seqqat R, Guo J, Guo
X, Qi Z, Yu D, Mohapatra B, Zutshi N, An W, et al: c-Cbl inhibition
improves cardiac function and survival in response to myocardial
ischemia. Circulation. 129:2031–2043. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Yu SY, Dong B, Fang ZF, Hu XQ, Tang L and
Zhou SH: Knockdown of lncRNA AK139328 alleviates myocardial
ischaemia/reperfusion injury in diabetic mice via modulating
miR-204-3p and inhibiting autophagy. J Cell Mol Med. 22:4886–4898.
2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Richardson P, McKenna W, Bristow M, Maisch
B, Mautner B, O'Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I,
et al: Report of the 1995 World Health Organization/international
society and federation of cardiology task force on the definition
and classification of cardiomyopathies. Circulation. 93:841–842.
1996.PubMed/NCBI View Article : Google Scholar
|
27
|
Liu D: Effects of Nicorandil combined with
Danhong injection on SOD and MDA content in patients with
myocardial ischemia-reperfusion injury. Mod J Integr Tradit Chin
West Med. 1:78–80. 2016.
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
29
|
Szklarczyk D, Gable AL, Nastou KC, Lyon D,
Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al:
The STRING database in 2021: Customizable protein-protein networks,
and functional characterization of user-uploaded gene/measurement
sets. Nucleic Acids Res. 49:D605–D612. 2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Hausenloy DJ: Conditioning the heart to
prevent myocardial reperfusion injury during PPCI. Eur Heart J
Acute Cardiovasc Care. 1:13–32. 2012.PubMed/NCBI View Article : Google Scholar
|
31
|
Hausenloy DJ, Candilio L, Evans R, Ariti
C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J,
et al: Remote ischemic preconditioning and outcomes of cardiac
surgery. N Engl J Med. 373:1408–1417. 2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Miao W, Yan Y, Bao TH, Jia WJ, Yang F,
Wang Y, Zhu YH, Yin M and Han JH: Ischemic postconditioning exerts
neuroprotective effect through negatively regulating PI3K/Akt2
signaling pathway by microRNA-124. Biomed Pharmacother.
126(109786)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Heusch G, Bøtker HE, Przyklenk K,
Redington A and Yellon D: Remote ischemic conditioning. J Am Coll
Cardiol. 65:177–195. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Soares ROS, Losada DM, Jordani MC, Évora P
and Castro-E-Silva O: Ischemia/reperfusion injury revisited: An
overview of the latest pharmacological strategies. Int J Mol Sci.
20(5034)2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Ivary SHA, Jajarmy N, Shahri MK, Shokoohi
M, Shoorei H, Ebadi A, Moghimian M and Sigaroodi F: Effect of fish
and flaxseed oil supplementation on isoprenaline-induced myocardial
infarction in rats: Inhibition of mitochondrial permeability
transition pore opening. Crescent J Med Biol Sci. 6:158–163.
2019.
|
36
|
Zheng Y, Shi B, Ma M, Wu X and Lin X: The
novel relationship between Sirt3 and autophagy in myocardial
ischemia-reperfusion. J Cell Physiol. 234:5488–5495.
2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Han D, Wang Y, Chen J, Zhang J, Yu P,
Zhang R, Li S, Tao B, Wang Y, Qiu Y, et al: Activation of melatonin
receptor 2 but not melatonin receptor 1 mediates
melatonin-conferred cardioprotection against myocardial
ischemia/reperfusion injury. J Pineal Res.
67(e12571)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Li J, Zheng X, Ma X, Xu X, Du Y, Lv Q, Li
X, Wu Y, Sun H, Yu L and Zhang Z: Melatonin protects against
chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2
pathway. J Inorg Biochem. 197(110698)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Yang D, Yang Q, Fu N, Li S, Han B, Liu Y,
Tang Y, Guo X, Lv Z and Zhang Z: Hexavalent chromium induced heart
dysfunction via Sesn2-mediated impairment of mitochondrial function
and energy supply. Chemosphere. 264(128547)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Bouayed J and Bohn T: Exogenous
antioxidants-double-edged swords in cellular redox state: Health
beneficial effects at physiologic doses versus deleterious effects
at high doses. Oxid Med Cell Longev. 3:228–237. 2010.PubMed/NCBI View Article : Google Scholar
|
41
|
Puente BN, Kimura W, Muralidhar SA, Moon
J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R,
Garcia JA, et al: The oxygen-rich postnatal environment induces
cardiomyocyte cell-cycle arrest through DNA damage response. Cell.
157:565–579. 2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Sun F, Zhuang Y, Zhu H, Wu H, Li D, Zhan
L, Yang W, Yuan Y, Xie Y, Yang S, et al: LncRNA PCFL promotes
cardiac fibrosis via miR-378/GRB2 pathway following myocardial
infarction. J Mol Cell Cardiol. 133:188–198. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Peng X, Lin L, Zhou X, Yang D, Cao Y, Yin
T and Liu Y: miR-133b inhibits myocardial
ischemia-reperfusion-induced cardiomyocyte apoptosis and
accumulation of reactive oxygen species in rats by targeting YES1.
Nan Fang Yi Ke Da Xue Xue Bao. 40:1390–1398. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
44
|
Su C, Fan X, Xu F, Wang J and Chen Y:
Prostaglandin E1 attenuates post-cardiac arrest myocardial
dysfunction through inhibition of mitochondria-mediated
cardiomyocyte apoptosis. Mol Med Rep. 23(110)2021.PubMed/NCBI View Article : Google Scholar
|
45
|
Chuang GC, Xia H, Mahne SE and Varner KJ:
Environmentally persistent free radicals cause apoptosis in HL-1
cardiomyocytes. Cardiovasc Toxicol. 17:140–149. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Pirocanac EC, Nassirpour R, Yang M, Wang
J, Nardin SR, Gu J, Fang B, Moossa AR, Hoffman RM and Bouvet M:
Bax-induction gene therapy of pancreatic cancer. J Surg Res.
106:346–351. 2002.PubMed/NCBI View Article : Google Scholar
|
47
|
Dejean LM, Martinez-Caballero S, Guo L,
Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B,
Jonas EA and Kinnally KW: Oligomeric Bax is a component of the
putative cytochrome c release channel MAC, mitochondrial
apoptosis-induced channel. Mol Biol Cell. 16:2424–2432.
2005.PubMed/NCBI View Article : Google Scholar
|
48
|
Yang J, Liu X, Bhalla K, Kim CN, Ibrado
AM, Cai J, Peng TI, Jones DP and Wang X: Prevention of apoptosis by
Bcl-2: Release of cytochrome c from mitochondria blocked. Science.
275:1129–1132. 1997.PubMed/NCBI View Article : Google Scholar
|