1
|
Sharma S and Meena LS: Potential of
Ca2+ in Mycobacterium tuberculosis
H37Rv pathogenesis and survival. Appl Biochem
Biotechnol. 181:762–771. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Chakaya JM, Harries AD and Marks GB:
Ending tuberculosis by 2030-Pipe dream or reality? Int J Infect
Dis. 92S:S51–S54. 2020.PubMed/NCBI View Article : Google Scholar
|
3
|
de Martino M, Lodi L, Galli L and
Chiappini E: Immune response to Mycobacterium tuberculosis:
A narrative review. Front Pediatr. 7(350)2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Xu G, Wang J, Gao GF and Liu CH: Insights
into battles between Mycobacterium tuberculosis and
macrophages. Protein Cell. 5:728–736. 2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Paik S and Jo EK: An interplay between
autophagy and immunometabolism for host defense against
mycobacterial infection. Front Immunol. 11(603951)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Monteith GR, Davis FM and Roberts-Thomson
SJ: Calcium channels and pumps in cancer: Changes and consequences.
J Biol Chem. 287:31666–31673. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Huang W, Lu C, Wu Y, Ouyang S and Chen Y:
T-type calcium channel antagonists, mibefradil and NNC-55-0396
inhibit cell proliferation and induce cell apoptosis in leukemia
cell lines. J Exp Clin Cancer Res. 34(54)2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Abu El Maaty MA and Wölfl S: Vitamin D as
a novel regulator of tumor metabolism: Insights on potential
mechanisms and implications for anti-cancer therapy. Int J Mol Sci.
18(3184)2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Mondul AM, Weinstein SJ, Layne TM and
Albanes D: Vitamin D and cancer risk and mortality: State of the
science, gaps, and challenges. Epidemiol Rev. 39:28–48.
2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Martineau AR: Old wine in new bottles:
Vitamin D in the treatment and prevention of tuberculosis. Proc
Nutr Soc. 71:84–89. 2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang L, Jiang X, Pfau D, Ling Y and
Nathan CF: Type I interferon signaling mediates Mycobacterium
tuberculosis-induced macrophage death. J Exp Med.
218(e20200887)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Rizzuto R, Pinton P, Ferrari D, Chami M,
Szabadkai G, Magalhães PJ, Di Virgilio F and Pozzan T: Calcium and
apoptosis: Facts and hypotheses. Oncogene. 22:8619–8627.
2003.PubMed/NCBI View Article : Google Scholar
|
13
|
Komohara Y, Fujiwara Y, Ohnishi K and
Takeya M: Tumor-associated macrophages: Potential therapeutic
targets for anti-cancer therapy. Adv Drug Deliv Rev. 99:180–185.
2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Chanput W, Mes J, Vreeburg RA, Savelkoul
HF and Wichers HJ: Transcription profiles of LPS-stimulated THP-1
monocytes and macrophages: A tool to study inflammation modulating
effects of food-derived compounds. Food Funct. 1:254–261.
2010.PubMed/NCBI View Article : Google Scholar
|
15
|
Kang P, Zhang W, Chen X, Yi X, Song P,
Chang Y, Zhang S, Gao T, Li C and Li S: TRPM2 mediates
mitochondria-dependent apoptosis of melanocytes under oxidative
stress. Free Radic Biol Med. 126:259–268. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Wang CH, Kao CH, Chen YF, Wei YH and Tsai
TF: Cisd2 mediates lifespan: Is there an interconnection among
Ca²+ homeostasis, autophagy, and lifespan? Free Radic
Res. 48:1109–1114. 2014.PubMed/NCBI View Article : Google Scholar
|
17
|
Bussi C and Gutierrez MG: Mycobacterium
tuberculosis infection of host cells in space and time. FEMS
Microbiol Rev. 43:341–361. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Adeniji AA, Knoll KE and Loots DT:
Potential anti-TB investigational compounds and drugs with
repurposing potential in TB therapy: A conspectus. Appl Microbiol
Biotechnol. 104:5633–5662. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Gough ME, Graviss EA and May EE: The
dynamic immunomodulatory effects of vitamin D3 during Mycobacterium
infection. Innate Immun. 23:506–523. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Svensson D, Nebel D and Nilsson BO:
Vitamin D3 modulates the innate immune response through regulation
of the hCAP-18/LL-37 gene expression and cytokine production.
Inflamm Res. 65:25–32. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Riendeau CJ and Kornfeld H: THP-1 cell
apoptosis in response to Mycobacterial infection. Infect Immun.
71:254–259. 2003.PubMed/NCBI View Article : Google Scholar
|
22
|
Chanput W, Mes JJ and Wichers HJ: THP-1
cell line: An in vitro cell model for immune modulation approach.
Int Immunopharmacol. 23:37–45. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Hashemipour S, Lalooha F, Zahir Mirdamadi
S, Ziaee A and Dabaghi Ghaleh T: Effect of vitamin D administration
in vitamin D-deficient pregnant women on maternal and neonatal
serum calcium and vitamin D concentrations: A randomised clinical
trial. Br J Nutr. 110:1611–1616. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Luong KV and Nguyen LT: The beneficial
role of vitamin D and its analogs in cancer treatment and
prevention. Crit Rev Oncol Hematol. 73:192–201. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Galati S, Boni C, Gerra MC, Lazzaretti M
and Buschini A: Autophagy: A player in response to oxidative stress
and DNA damage. Oxid Med Cell Longev. 2019(5692958)2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Lamark T, Svenning S and Johansen T:
Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays
Biochem. 61:609–624. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Zheng W, Xie W, Yin D, Luo R, Liu M and
Guo F: ATG5 and ATG7 induced autophagy interplays with UPR via PERK
signaling. Cell Commun Signal. 17(42)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
He C and Levine B: The beclin 1
interactome. Curr Opin Cell Biol. 22:140–149. 2010.PubMed/NCBI View Article : Google Scholar
|
29
|
Song M, Bode AM, Dong Z and Lee MH: AKT as
a therapeutic target for cancer. Cancer Res. 79:1019–1031.
2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Revathidevi S and Munirajan AK: Akt in
cancer: Mediator and more. Semin Cancer Biol. 59:80–91.
2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Revathidevi S and Munirajan AK: An
overview of autophagy: Morphology, mechanism, and regulation.
Antioxid Redox Signal. 20:460–473. 2014.PubMed/NCBI View Article : Google Scholar
|
32
|
Kania E, Pająk B and Orzechowski A:
Calcium homeostasis and ER stress in control of autophagy in cancer
cells. Biomed Res Int. 2015(352794)2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Pinton P, Giorgi C, Siviero R, Zecchini E
and Rizzuto R: Calcium and apoptosis: ER-mitochondria
Ca2+ transfer in the control of apoptosis. Oncogene.
27:6407–6418. 2008.PubMed/NCBI View Article : Google Scholar
|
34
|
Padhi A, Pattnaik K, Biswas M, Jagadeb M,
Behera A and Sonawane A: Mycobacterium tuberculosis LprE
suppresses TLR2-dependent cathelicidin and autophagy expression to
enhance bacterial survival in macrophages. J Immunol.
203:2665–2678. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
El-Sharkawy A and Malki A: Vitamin D
signaling in inflammation and cancer: Molecular mechanisms and
therapeutic implications. Molecules. 25(3219)2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Kimmey JM, Huynh JP, Weiss LA, Park S,
Kambal A, Debnath J, Virgin HW and Stallings CL: Unique role for
ATG5 in neutrophil-mediated immunopathology during M.
tuberculosis infection. Nature. 528:565–569. 2015.PubMed/NCBI View Article : Google Scholar
|