1
|
Soehnlein O and Libby P: Targeting
inflammation in atherosclerosis-from experimental insights to the
clinic. Nat Rev Drug Discov. 20:589–610. 2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Chen X, Zhang D, Li Y, Wang W, Bei W and
Guo J: NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and
atherosclerosis: Friend or foe? Pharmacol Re.
173(105885)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Senior PA: Glucose as a modifiable cause
of atherosclerotic cardiovascular disease: Insights from type 1
diabetes and transplantation. Atherosclerosis. 335:16–22.
2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Poznyak AV, Nikiforov NG, Starodubova AV,
Popkova TV and Orekhov AN: Macrophages and foam cells: Brief
overview of their role, linkage, and targeting potential in
atherosclerosis. Biomedicines. 9(1221)2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Tall AR and Westerterp M: Inflammasomes,
neutrophil extracellular traps, and cholesterol. J Lipid Res.
60:721–727. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Han Y, Qiu H, Pei X, Fan Y, Tian H and
Geng J: Low-dose sinapic acid abates the pyroptosis of macrophages
by downregulation of lncRNA-MALAT1 in rats with diabetic
atherosclerosis. J Cardiovasc Pharmacol. 71:104–112.
2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang C, Song JW, Huang HH, Fan X, Huang
L, Deng JN, Tu B, Wang K, Li J, Zhou MJ, et al: NLRP3 inflammasome
induces CD4+ T cell loss in chronically HIV-1-infected
patients. J Clin Invest. 131(e138861)2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y,
Wang Y, Li D, Liu W, Zhang Y, et al: Granzyme a from cytotoxic
lymphocytes cleaves GSDMB to trigger pyroptosis in target cells.
Science (New York, N.Y.). 368(eaaz7548)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Wang Y, Fang C, Xu L, Yang B, Song E and
Song Y: Polybrominated diphenyl ether quinone exposure induces
atherosclerosis progression via CD36-mediated lipid accumulation,
NLRP3 inflammasome activation, and pyroptosis. Chem Res Toxicol.
34:2125–2134. 2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Chen S, Markman JL, Shimada K, Crother TR,
Lane M, Abolhesn A, Shah PK and Arditi M: Sex-specific effects of
the Nlrp3 inflammasome on atherogenesis in LDL receptor-deficient
mice. JACC Basic Transl Sci. 5:582–598. 2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Yang H, Lv H, Li H, Ci X and Peng L:
Oridonin protects LPS-induced acute lung injury by modulating
Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB
pathways. Cell Commun Signal. 17(62)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Jayasuriya R, Dhamodharan U, Ali D,
Ganesan K, Xu B and Ramkumar KM: Targeting Nrf2/Keap1 signaling
pathway by bioactive natural agents: Possible therapeutic strategy
to combat liver disease. Phytomedicine. 92(153755)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Wiegman CH, Li F, Ryffel B, Togbe D and
Chung KF: Oxidative stress in ozone-induced chronic lung
inflammation and emphysema: A facet of chronic obstructive
pulmonary disease. Front Immunol. 11(1957)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhang X, Ding M, Zhu P, Huang H, Zhuang Q,
Shen J, Cai Y, Zhao M and He Q: New insights into the Nrf-2/HO-1
signaling axis and its application in pediatric respiratory
diseases. Oxid Med Cell Longev. 2019(3214196)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y,
Meng G, Han Y, Wang Y, Liu G, et al: Hydrogen sulfide induces keap1
S-sulfhydration and suppresses diabetes-accelerated atherosclerosis
via Nrf2 activation. Diabetes. 65:3171–3184. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu Y, Yang X, Liu Y, Jiang T, Ren S, Chen
J, Xiong H, Yuan M, Li W, Machens HG and Chen Z: NRF2 signalling
pathway: New insights and progress in the field of wound healing. J
Cell Mol Med. 25:5857–5868. 2021.PubMed/NCBI View Article : Google Scholar
|
17
|
Alonso-Piñeiro JA, Gonzalez-Rovira A,
Sánchez-Gomar I, Moreno JA and Durán-Ruiz MC: Nrf2 and heme
oxygenase-1 involvement in atherosclerosis related oxidative
stress. Antioxidants (Basel). 10(1463)2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Grancara S, Martinis P, Manente S,
García-Argáez AN, Tempera G, Bragadin M, Via LD, Agostinelli E and
Toninello A: Bidirectional fluxes of spermine across the
mitochondrial membrane. Amino Acids. 46:671–679. 2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Li QZ, Zuo ZW, Zhou ZR and Ji Y: Polyamine
homeostasis-based strategies for cancer: The role of combination
regimens. Eur J Pharmacol. 910(174456)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Matsumoto M: Prevention of atherosclerosis
by the induction of microbial polyamine production in the
intestinal lumen. Biol Pharm Bull. 43:221–229. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Wang Y, Chen J, Li S, Zhang X, Guo Z, Hu
J, Shao X, Song N, Zhao Y, Li H, et al: Exogenous spermine
attenuates rat diabetic cardiomyopathy via suppressing ROS-p53
mediated downregulation of calcium-sensitive receptor. Redox Biol.
32(101514)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Zhao S, Song T, Gu Y, Zhang Y, Cao S, Miao
Q, Zhang X, Chen H, Gao Y, Zhang L, et al: Hydrogen sulfide
alleviates liver injury through the S-sulfhydrated-kelch-like
ECH-associated protein 1/nuclear erythroid 2-related factor
2/low-density lipoprotein receptor-related protein 1 pathway.
Hepatology. 73:282–302. 2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Verreth W, De Keyzer D, Davey PC, Geeraert
B, Mertens A, Herregods MC, Smith G, Desjardins F, Balligand JL and
Holvoet P: Rosuvastatin restores superoxide dismutase expression
and inhibits accumulation of oxidized LDL in the aortic arch of
obese dyslipidemic mice. Br J Pharmacol. 151:347–355.
2007.PubMed/NCBI View Article : Google Scholar
|
24
|
Qiu Z, He Y, Ming H, Lei S, Leng Y and Xia
ZY: Lipopolysaccharide (LPS) aggravates high glucose- and
hypoxia/reoxygenation-induced injury through activating
ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2
cardiomyocytes. J Diabetes Res. 2019(8151836)2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Josefs T, Barrett TJ, Brown EJ, Quezada A,
Wu X, Voisin M, Amengual J and Fisher EA: Neutrophil extracellular
traps promote macrophage inflammation and impair atherosclerosis
resolution in diabetic mice. JCI insight. 5(e134796)2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Li P, Wang Y, Liu X, Liu B, Wang ZY, Xie
F, Qiao W, Liang ES, Lu QH and Zhang MX: Loss of PARP-1 attenuates
diabetic arteriosclerotic calcification via Stat1/Runx2 axis. Cell
Death Dis. 11(22)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Moss JW and Ramji DP: Nutraceutical
therapies for atherosclerosis. Nat Rev Cardiol. 13:513–532.
2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Igarashi K and Kashiwagi K: Functional
roles of polyamines and their metabolite acrolein in eukaryotic
cells. Amino Acids. 53:1473–1492. 2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Lu J, Xu L, Zeng Z, Xue C, Li J, Chen X,
Zhou P, Lin S, Liao Y, Du X, et al: Normothermic ex vivo heart
perfusion combined with melatonin enhances myocardial protection in
rat donation after circulatory death hearts via inhibiting NLRP3
inflammasome-mediated pyroptosis. Front Cell Dev Biol.
9(733183)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Abderrazak A, Syrovets T, Couchie D, El
Hadri K, Friguet B, Simmet T and Rouis M: NLRP3 inflammasome: From
a danger signal sensor to a regulatory node of oxidative stress and
inflammatory diseases. Redox Biol. 4:296–307. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Chen JJ, Tao J, Zhang XL, Xia LZ, Zeng JF,
Zhang H, Wei DH, Lv YC, Li GH and Wang Z: Inhibition of the
ox-LDL-induced pyroptosis by FGF21 of human umbilical vein
endothelial cells through the TET2-UQCRC1-ROS pathway. DNA Cell
Biol. 39:661–670. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Zou Y, Luo X, Feng Y, Fang S, Tian J, Yu B
and Li J: Luteolin prevents THP-1 macrophage pyroptosis by
suppressing ROS production via Nrf2 activation. Chem Biol Interact.
345(109573)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Wang J, Li S, Wang J, Wu F, Chen Y, Zhang
H, Guo Y, Lin Y, Li L, Yu X, et al: Spermidine alleviates cardiac
aging by improving mitochondrial biogenesis and function. Aging
(Albany NY). 12:650–671. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Mohammadi M, Aelaei M and Saidi M:
Pre-harvest spray of GABA and spermine delays postharvest
senescence and alleviates chilling injury of gerbera cut flowers
during cold storage. Sci Rep. 11(14166)2021.PubMed/NCBI View Article : Google Scholar
|
35
|
He YY, Yan Y, Jiang X, Zhao JH, Wang Z, Wu
T, Wang Y, Guo SS, Ye J, Lian TY, et al: Spermine promotes
pulmonary vascular remodelling and its synthase is a therapeutic
target for pulmonary arterial hypertension. Eur Respir J.
56(2000522)2020.PubMed/NCBI View Article : Google Scholar
|