A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve
- Authors:
- Pradhan Abhinav
- Gao-Feng Zhang
- Cui-Mei Zhao
- Ying-Jia Xu
- Juan Wang
- Yi-Qing Yang
-
Affiliations: Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China, Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China, Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China - Published online on: March 1, 2022 https://doi.org/10.3892/etm.2022.11240
- Article Number: 311
-
Copyright: © Abhinav et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M and Jin SC: Molecular genetics and complex inheritance of congenital heart disease. Genes (Basel). 12(1020)2021.PubMed/NCBI View Article : Google Scholar | |
Martin LJ and Benson DW: Focused strategies for defining the genetic architecture of congenital heart defects. Genes (Basel). 12(827)2021.PubMed/NCBI View Article : Google Scholar | |
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, et al: Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation. 139:e56–e528. 2019.PubMed/NCBI View Article : Google Scholar | |
Skeffington KL, Bond AR, Bigotti MG, AbdulGhani S, Iacobazzi D, Kang SL, Heesom KJ, Wilson MC, Stoica S, Martin R, et al: Changes in inflammation and oxidative stress signalling pathways in coarcted aorta triggered by bicuspid aortic valve and growth in young children. Exp Ther Med. 20(48)2020.PubMed/NCBI View Article : Google Scholar | |
Dragomir C, Manea AM, Enatescu VR, Lacatusu AAM, Lacatusu A, Henry OI, Boia M and Ilie C: Left heart hypoplasia operated using double pulmonary arterial banding with double arterial duct stenting: A case report. Exp Ther Med. 20(193)2020.PubMed/NCBI View Article : Google Scholar | |
Hu C, Huang S, Wu F and Ding H: MicroRNA-219-5p participates in cyanotic congenital heart disease progression by regulating cardiomyocyte apoptosis. Exp Ther Med. 21(36)2021.PubMed/NCBI View Article : Google Scholar | |
Andonian CS, Freilinger S, Achenbach S, Ewert P, Gundlach U, Hoerer J, Kaemmerer H, Pieper L, Weyand M, Neidenbach RC, et al: ‘Well-being paradox’ revisited: A cross-sectional study of quality of life in over 4000 adults with congenital heart disease. BMJ Open. 11(e049531)2021.PubMed/NCBI View Article : Google Scholar | |
Brudy L, Meyer M, Oberhoffer R, Ewert P and Müller J: Move more-be happier? physical activity and health-related quality of life in children with congenital heart disease. Am Heart J. 241:68–73. 2021.PubMed/NCBI View Article : Google Scholar | |
Moons P, Luyckx K, Thomet C, Budts W, Enomoto J, Sluman MA, Lu CW, Jackson JL, Khairy P, Cook SC, et al: Physical functioning, mental health, and quality of life in different congenital heart defects: Comparative analysis in 3538 patients from 15 countries. Can J Cardiol. 37:215–223. 2021.PubMed/NCBI View Article : Google Scholar | |
Hayama Y, Ohuchi H, Negishi J, Iwasa T, Sakaguchi H, Miyazaki A, Tsuda E and Kurosaki K: Effect of stiffened and dilated ascending aorta on aerobic exercise capacity in repaired patients with complex congenital heart disease. Am J Cardiol. 129:87–94. 2020.PubMed/NCBI View Article : Google Scholar | |
Spiesshoefer J, Orwat S, Henke C, Kabitz HJ, Katsianos S, Borrelli C, Baumgartner H, Nofer JR, Spieker M, Bengel P, et al: Inspiratory muscle dysfunction and restrictive lung function impairment in congenital heart disease: Association with immune inflammatory response and exercise intolerance. Int J Cardiol. 318:45–51. 2020.PubMed/NCBI View Article : Google Scholar | |
Meyer M, Brudy L, García-Cuenllas L, Hager A, Ewert P, Oberhoffer R and Müller J: Current state of home-based exercise interventions in patients with congenital heart disease: A systematic review. Heart. 106:333–341. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu C, Su X, Ma S, Shu Y, Zhang Y, Hu Y and Mo X: Effects of exercise training in postoperative patients with congenital heart disease: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 9(e013516)2020.PubMed/NCBI View Article : Google Scholar | |
Meyer M, Brudy L, Fuertes-Moure A, Hager A, Oberhoffer-Fritz R, Ewert P and Müller J: E-health exercise intervention for pediatric patients with congenital heart disease: A randomized controlled trial. J Pediatr. 233:163–168. 2021.PubMed/NCBI View Article : Google Scholar | |
Asschenfeldt B, Evald L, Heiberg J, Salvig C, Østergaard L, Dalby RB, Eskildsen SF and Hjortdal VE: Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood. J Am Heart Assoc. 9(e015843)2020.PubMed/NCBI View Article : Google Scholar | |
Kessler N, Feldmann M, Schlosser L, Rometsch S, Brugger P, Kottke R, Knirsch W, Oxenius A, Greutmann M and Latal B: Structural brain abnormalities in adults with congenital heart disease: Prevalence and association with estimated intelligence quotient. Int J Cardiol. 306:61–66. 2020.PubMed/NCBI View Article : Google Scholar | |
Bonthrone AF, Dimitrova R, Chew A, Kelly CJ, Cordero-Grande L, Carney O, Egloff A, Hughes E, Vecchiato K, Simpson J, et al: Individualized brain development and cognitive outcome in infants with congenital heart disease. Brain Commun. 3(fcab046)2021.PubMed/NCBI View Article : Google Scholar | |
Gui J, Liang S, Sun Y, Liu Y, Chen C, Wang B, Zhong J, Yu Y and He S: Effect of perioperative amplitude-integrated electroencephalography on neurodevelopmental outcomes following infant heart surgery. Exp Ther Med. 20:2879–2887. 2020.PubMed/NCBI View Article : Google Scholar | |
Giang KW, Mandalenakis Z, Dellborg M, Lappas G, Eriksson P, Hansson PO and Rosengren A: Long-term risk of hemorrhagic stroke in young patients with congenital heart disease. Stroke. 49:1155–1162. 2018.PubMed/NCBI View Article : Google Scholar | |
Giang KW, Fedchenko M, Dellborg M, Eriksson P and Mandalenakis Z: Burden of ischemic stroke in patients with congenital heart disease: a nationwide, case-control study. J Am Heart Assoc. 10(e020939)2021.PubMed/NCBI View Article : Google Scholar | |
Freisinger E, Gerß J, Makowski L, Marschall U, Reinecke H, Baumgartner H, Koeppe J and Diller GP: Current use and safety of novel oral anticoagulants in adults with congenital heart disease: Results of a nationwide analysis including more than 44 000 patients. Eur Heart J. 41:4168–4177. 2020.PubMed/NCBI View Article : Google Scholar | |
Diller GP, Körten MA, Bauer UM, Miera O, Tutarel O, Kaemmerer H, Berger F and Baumgartner H: German Competence Network for Congenital Heart Defects Investigators. Current therapy and outcome of Eisenmenger syndrome: Data of the German National Register for congenital heart defects. Eur Heart J. 37:1449–1455. 2016.PubMed/NCBI View Article : Google Scholar | |
Kaemmerer H, Gorenflo M, Huscher D, Pittrow D, Apitz C, Baumgartner H, Berger F, Bruch L, Brunnemer E, Budts W, et al: Pulmonary hypertension in adults with congenital heart disease: Real-world data from the International COMPERA-CHD Registry. J Clin Med. 9(1456)2020.PubMed/NCBI View Article : Google Scholar | |
Long L, Xiao Y, Yin X, Gao S, Zhou L and Liu H: Expression of serum miR-27b and miR-451 in patients with congenital heart disease associated pulmonary artery hypertension and risk factor analysis. Exp Ther Med. 20:3196–3202. 2020.PubMed/NCBI View Article : Google Scholar | |
Diller GP, Enders D, Lammers AE, Orwat S, Schmidt R, Radke RM, Gerss J, De Torres Alba F, Kaleschke G, Bauer UM, et al: Mortality and morbidity in patients with congenital heart disease hospitalised for viral pneumonia. Heart. 107:1069–1076. 2020.PubMed/NCBI View Article : Google Scholar | |
Radke RM, Frenzel T, Baumgartner H and Diller GP: Adult congenital heart disease and the COVID-19 pandemic. Heart. 106:1302–1309. 2020.PubMed/NCBI View Article : Google Scholar | |
Diller GP, Gatzoulis MA, Broberg CS, Aboulhosn J, Brida M, Schwerzmann M, Chessa M, Kovacs AH and Roos-Hesselink J: Coronavirus disease 2019 in adults with congenital heart disease: A position paper from the ESC working group of adult congenital heart disease, and the International Society for Adult Congenital Heart Disease. Eur Heart J. 42:1858–1865. 2021.PubMed/NCBI View Article : Google Scholar | |
Diller GP and Baumgartner H: Endocarditis in adults with congenital heart disease: New answers-new questions. Eur Heart J. 38:2057–2059. 2017.PubMed/NCBI View Article : Google Scholar | |
Tutarel O, Alonso-Gonzalez R, Montanaro C, Schiff R, Uribarri A, Kempny A, Grübler MR, Uebing A, Swan L, Diller GP, et al: Infective endocarditis in adults with congenital heart disease remains a lethal disease. Heart. 104:161–165. 2018.PubMed/NCBI View Article : Google Scholar | |
Cahill TJ, Jewell PD, Denne L, Franklin RC, Frigiola A, Orchard E and Prendergast BD: Contemporary epidemiology of infective endocarditis in patients with congenital heart disease: A UK prospective study. Am Heart J. 215:70–77. 2019.PubMed/NCBI View Article : Google Scholar | |
Fedchenko M, Mandalenakis Z, Giang KW, Rosengren A, Eriksson P and Dellborg M: Long-term outcomes after myocardial infarction in middle-aged and older patients with congenital heart disease-a nationwide study. Eur Heart J. 42:2577–2586. 2021.PubMed/NCBI View Article : Google Scholar | |
Orwat S and Diller GP: Congenital heart defects as an intrinsic additional risk factor for the occurrence and outcome of myocardial infarction. Eur Heart J. 42:2587–2589. 2021.PubMed/NCBI View Article : Google Scholar | |
Hirono K, Hata Y, Miyao N, Okabe M, Takarada S, Nakaoka H, Ibuki K, Ozawa S, Yoshimura N, Nishida N, et al: Left ventricular noncompaction and congenital heart disease increases the risk of congestive heart failure. J Clin Med. 9(785)2020.PubMed/NCBI View Article : Google Scholar | |
Menachem JN, Schlendorf KH, Mazurek JA, Bichell DP, Brinkley DM, Frischhertz BP, Mettler BA, Shah AS, Zalawadiya S, Book W, et al: Advanced heart failure in adults with congenital heart disease. JACC Heart Fail. 8:87–99. 2020.PubMed/NCBI View Article : Google Scholar | |
Arnaert S, De Meester P, Troost E, Droogne W, Van Aelst L, Van Cleemput J, Voros G, Gewillig M, Cools B, Moons P, et al: Heart failure related to adult congenital heart disease: Prevalence, outcome and risk factors. ESC Heart Fail. 8:2940–2950. 2021.PubMed/NCBI View Article : Google Scholar | |
Sakhi R, Kauling RM, Theuns DA, Szili-Torok T, Bhagwandien RE, van den Bosch AE, Cuypers JAAE, Roos-Hesselink JW and Yap SC: Early detection of ventricular arrhythmias in adults with congenital heart disease using an insertable cardiac monitor (EDVA-CHD study). Int J Cardiol. 305:63–69. 2020.PubMed/NCBI View Article : Google Scholar | |
Casteigt B, Samuel M, Laplante L, Shohoudi A, Apers S, Kovacs AH, Luyckx K, Thomet C, Budts W, Enomoto J, et al: Atrial arrhythmias and patient-reported outcomes in adults with congenital heart disease: An international study. Heart Rhythm. 18:793–800. 2021.PubMed/NCBI View Article : Google Scholar | |
Wasmer K, Eckardt L, Baumgartner H and Köbe J: Therapy of supraventricular and ventricular arrhythmias in adults with congenital heart disease-narrative review. Cardiovasc Diagn Ther. 11:550–562. 2021.PubMed/NCBI View Article : Google Scholar | |
Goldstein SA, D'Ottavio A, Spears T, Chiswell K, Hartman RJ, Krasuski RA, Kemper AR, Meyer RE, Hoffman TM, Walsh MJ, et al: Causes of death and cardiovascular comorbidities in adults with congenital heart disease. J Am Heart Assoc. 9(e016400)2020.PubMed/NCBI View Article : Google Scholar | |
Oliver JM, Gallego P, Gonzalez AE, Avila P, Alonso A, Garcia-Hamilton D, Peinado R, Dos-Subirà L, Pijuan-Domenech A, Rueda J, et al: Predicting sudden cardiac death in adults with congenital heart disease. Heart. 107:67–75. 2021.PubMed/NCBI View Article : Google Scholar | |
Vehmeijer JT, Koyak Z, Leerink JM, Zwinderman AH, Harris L, Peinado R, Oechslin EN, Robbers-Visser D, Groenink M, Boekholdt SM, et al: Identification of patients at risk of sudden cardiac death in congenital heart disease: the PRospEctiVE study on implaNTable cardIOverter defibrillator therapy and suddeN cardiac death in Adults with Congenital Heart Disease (PREVENTION-ACHD). Heart Rhythm. 18:785–792. 2021.PubMed/NCBI View Article : Google Scholar | |
Williams JL, Torok RD, D'Ottavio A, Spears T, Chiswell K, Forestieri NE, Sang CJ, Paolillo JA, Walsh MJ, Hoffman TM, et al: Causes of death in infants and children with congenital heart disease. Pediatr Cardiol. 42:1308–1315. 2021.PubMed/NCBI View Article : Google Scholar | |
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2021 update: A report from the American Heart Association. Circulation. 143:e254–e743. 2021.PubMed/NCBI View Article : Google Scholar | |
Diller GP, Arvanitaki A, Opotowsky AR, Jenkins K, Moons P, Kempny A, Tandon A, Redington A, Khairy P, Mital S, et al: Lifespan perspective on congenital heart disease research: JACC state-of-the-art review. J Am Coll Cardiol. 77:2219–2235. 2021.PubMed/NCBI View Article : Google Scholar | |
Bouma BJ and Mulder BJ: Changing landscape of congenital heart disease. Circ Res. 120:908–922. 2017.PubMed/NCBI View Article : Google Scholar | |
Spector LG, Menk JS, Knight JH, McCracken C, Thomas AS, Vinocur JM, Oster ME, St Louis JD, Moller JH and Kochilas L: Trends in long-term mortality after congenital heart surgery. J Am Coll Cardiol. 71:2434–2446. 2018.PubMed/NCBI View Article : Google Scholar | |
Niwa K, Kaemmerer H and von Kodolitsch Y: Current diagnosis and management of late complications in adult congenital heart disease. Cardiovasc Diagn Ther. 11:478–480. 2021.PubMed/NCBI View Article : Google Scholar | |
Kalisch-Smith JI, Ved N and Sparrow DB: Environmental risk factors for congenital heart disease. Cold Spring Harb Perspect Biol. 12(a037234)2020.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Xiong Y, Dong X, Wang H, Qian Y, Ma D and Li X: Genome-wide methylation analysis reveals differentially methylated CpG sites and altered expression of heart development-associated genes in fetuses with cardiac defects. Exp Ther Med. 22(1032)2021.PubMed/NCBI View Article : Google Scholar | |
Bigras JL: Cardiovascular risk factors in patients with congenital heart disease. Can J Cardiol. 36:1458–1466. 2020.PubMed/NCBI View Article : Google Scholar | |
Helle E and Priest JR: Maternal obesity and diabetes mellitus as risk factors for congenital heart disease in the offspring. J Am Heart Assoc. 9(e011541)2020.PubMed/NCBI View Article : Google Scholar | |
Saliba A, Figueiredo AC, Baroneza JE, Afiune JY, Pic-Taylor A, Oliveira SF and Mazzeu JF: Genetic and genomics in congenital heart disease: A clinical review. J Pediatr (Rio J). 96:279–288. 2020.PubMed/NCBI View Article : Google Scholar | |
Shabana NA, Shahid SU and Irfan U: Genetic contribution to congenital heart disease (CHD). Pediatr Cardiol. 41:12–23. 2020.PubMed/NCBI View Article : Google Scholar | |
Majumdar U, Yasuhara J and Garg V: In vivo and in vitro genetic models of congenital heart disease. Cold Spring Harb Perspect Biol. 13(a036764)2021.PubMed/NCBI View Article : Google Scholar | |
Loffredo CA, Chokkalingam A, Sill AM, Boughman JA, Clark EB, Scheel J and Brenner JI: Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 124A:225–230. 2004.PubMed/NCBI View Article : Google Scholar | |
Arya P, Wilson TE, Parent JJ, Ware SM, Breman AM and Helm BM: An adult female with 5q34-q35.2 deletion: A rare syndromic presentation of left ventricular non-compaction and congenital heart disease. Eur J Med Genet. 63(103797)2020.PubMed/NCBI View Article : Google Scholar | |
Evangelidou P, Kousoulidou L, Salameh N, Alexandrou A, Papaevripidou I, Alexandrou IM, Ketoni A, Ioannidou C, Christophidou-Anastasiadou V, Tanteles GA, et al: An unusual combination of an atypical maternally inherited novel 0.3 Mb deletion in Williams-Beuren region and a de novo 22q11.21 microduplication in an infant with supravalvular aortic stenosis. Eur J Med Genet. 63(104084)2020.PubMed/NCBI View Article : Google Scholar | |
Szot JO, Campagnolo C, Cao Y, Iyer KR, Cuny H, Drysdale T, Flores-Daboub JA, Bi W, Westerfield L, Liu P, et al: Bi-allelic mutations in NADSYN1 cause multiple organ defects and expand the genotypic spectrum of congenital NAD deficiency disorders. Am J Hum Genet. 106:129–136. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen CA, Crutcher E, Gill H, Nelson TN, Robak LA, Jongmans MC, Pfundt R, Prasad C, Berard RA, Fannemel M, et al: The expanding clinical phenotype of germline ABL1-associated congenital heart defects and skeletal malformations syndrome. Hum Mutat. 41:1738–1744. 2020.PubMed/NCBI View Article : Google Scholar | |
Hsieh A, Morton SU, Willcox JAL, Gorham JM, Tai AC, Qi H, DePalma S, McKean D, Griffin E, Manheimer KB, et al: EM-mosaic detects mosaic point mutations that contribute to congenital heart disease. Genome Med. 12(42)2020.PubMed/NCBI View Article : Google Scholar | |
Kolomenski JE, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD and Dain L: An update on genetic variants of the NKX2-5. Hum Mutat. 41:1187–1208. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C, Scheidecker S, Fradin M, Morice-Picard F, Naudion S, et al: Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat. 41:2167–2178. 2020.PubMed/NCBI View Article : Google Scholar | |
Lin JI, Feinstein TN, Jha A, McCleary JT, Xu J, Arrigo AB, Rong G, Maclay LM, Ridge T, Xu X, et al: Mutation of LRP1 in cardiac neural crest cells causes congenital heart defects by perturbing outflow lengthening. Commun Biol. 3(312)2020.PubMed/NCBI View Article : Google Scholar | |
Sutani A, Shima H, Hijikata A, Hosokawa S, Katoh-Fukui Y, Takasawa K, Suzuki E, Doi S, Shirai T, Morio T, et al: WDR11 is another causative gene for coloboma, cardiac anomaly and growth retardation in 10q26 deletion syndrome. Eur J Med Genet. 63(103626)2020.PubMed/NCBI View Article : Google Scholar | |
Le Fevre A, Baptista J, Ellard S, Overton T, Oliver A, Gradhand E and Scurr I: Compound heterozygous Pkd1l1 variants in a family with two fetuses affected by heterotaxy and complex Chd. Eur J Med Genet. 63(103657)2020.PubMed/NCBI View Article : Google Scholar | |
Li W, Li B, Li T, Zhang E, Wang Q, Chen S and Sun K: Identification and analysis of KLF13 variants in patients with congenital heart disease. BMC Med Genet. 21(78)2020.PubMed/NCBI View Article : Google Scholar | |
Wang SS, Wang TM, Qiao XH, Huang RT, Xue S, Dong BB, Xu YJ, Liu XY and Yang YQ: KLF13 loss-of-function variation contributes to familial congenital heart defects. Eur Rev Med Pharmacol Sci. 24:11273–11285. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Sun YM, Xu YJ, Zhao CM, Yuan F, Guo XJ, Guo YH, Yang CX, Gu JN, Qiao Q, et al: A new TBX5 loss-of-function mutation contributes to congenital heart defect and atrioventricular block. Int Heart J. 61:761–768. 2020.PubMed/NCBI View Article : Google Scholar | |
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH and Yang YQ: A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol. 43(e20200142)2020.PubMed/NCBI View Article : Google Scholar | |
Wang C, Lv H, Ling X, Li H, Diao F, Dai J, Du J, Chen T, Xi Q, Zhao Y, et al: Association of assisted reproductive technology, germline de novo mutations and congenital heart defects in a prospective birth cohort study. Cell Res. 31:919–928. 2021.PubMed/NCBI View Article : Google Scholar | |
Lahrouchi N, Postma AV, Salazar CM, De Laughter DM, Tjong F, Piherová L, Bowling FZ, Zimmerman D, Lodder EM, Ta-Shma A, et al: Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy. J Clin Invest. 131(e142148)2021.PubMed/NCBI View Article : Google Scholar | |
Audain E, Wilsdon A, Breckpot J, Izarzugaza JM, Fitzgerald TW, Kahlert AK, Sifrim A, Wünnemann F, Perez-Riverol Y, Abdul-Khaliq H, et al: Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease. PLoS Genet. 17(e1009679)2021.PubMed/NCBI View Article : Google Scholar | |
Zheng SQ, Chen HX, Liu XC, Yang Q and He GW: Genetic analysis of the CITED2 gene promoter in isolated and sporadic congenital ventricular septal defects. J Cell Mol Med. 25:2254–2261. 2021.PubMed/NCBI View Article : Google Scholar | |
Fu F, Li R, Lei TY, Wang D, Yang X, Han J, Pan M, Zhen L, Li J, Li FT, et al: Compound heterozygous mutation of the ASXL3 gene causes autosomal recessive congenital heart disease. Hum Genet. 140:333–348. 2021.PubMed/NCBI View Article : Google Scholar | |
Hou C, Zheng J, Liu W, Xie L, Sun X, Zhang Y, Xu M, Li Y and Xiao T: Identification and characterization of a novel ELN mutation in congenital heart disease with pulmonary artery stenosis. Sci Rep. 11(14154)2021.PubMed/NCBI View Article : Google Scholar | |
Helm BM, Landis BJ and Ware SM: Genetic evaluation of inpatient neonatal and infantile congenital heart defects: New findings and review of the literature. Genes (Basel). 12(1244)2021.PubMed/NCBI View Article : Google Scholar | |
Massadeh S, Albeladi M, Albesher N, Alhabshan F, Kampe KD, Chaikhouni F, Kabbani MS, Beetz C and Alaamery M: Novel autosomal recessive splice-altering variant in PRKD1 is associated with congenital heart disease. Genes (Basel). 12(612)2021.PubMed/NCBI View Article : Google Scholar | |
Musfee FI, Agopian AJ, Goldmuntz E, Hakonarson H, Morrow BE, Taylor DM, Tristani-Firouzi M, Watkins WS, Yandell M and Mitchell LE: Common variation in cytoskeletal genes is associated with conotruncal heart defects. Genes (Basel). 12(655)2021.PubMed/NCBI View Article : Google Scholar | |
Meerschaut I, Vergult S, Dheedene A, Menten B, De Groote K, De Wilde H, Muiño Mosquera L, Panzer J, Vandekerckhove K, Coucke PJ, et al: A reassessment of copy number variations in congenital heart defects: Picturing the whole genome. Genes (Basel). 12(1048)2021.PubMed/NCBI View Article : Google Scholar | |
Yadav ML, Jain D, Neelabh Agrawal D, Kumar A and Mohapatra B: A gain-of-function mutation in CITED2 is associated with congenital heart disease. Mutat Res. 822(111741)2021.PubMed/NCBI View Article : Google Scholar | |
Basel-Salmon L, Ruhrman-Shahar N, Barel O, Hagari O, Marek-Yagel D, Azulai N, Bazak L, Svirsky R, Reznik-Wolf H, Lidzbarsky GA, et al: Biallelic variants in ETV2 in a family with congenital heart defects, vertebral abnormalities and preaxial polydactyly. Eur J Med Genet. 64(104124)2021.PubMed/NCBI View Article : Google Scholar | |
Huang S, Wu Y, Chen S, Yang Y, Wang Y, Wang H, Li P, Zhuang J and Xia Y: Novel insertion mutation (Arg1822_Glu1823dup) in MYH6 coiled-coil domain causing familial atrial septal defect. Eur J Med Genet. 64(104314)2021.PubMed/NCBI View Article : Google Scholar | |
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH and Yang YQ: SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet. 64(104211)2021.PubMed/NCBI View Article : Google Scholar | |
Li YJ and Yang YQ: An update on the molecular diagnosis of congenital heart disease: Focus on loss-of-function mutations. Expert Rev Mol Diagn. 17:393–401. 2017.PubMed/NCBI View Article : Google Scholar | |
Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan GJ, et al: Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 48:1060–1065. 2016.PubMed/NCBI View Article : Google Scholar | |
Darwich R, Li W, Yamak A, Komati H, Andelfinger G, Sun K and Nemer M: KLF13 is a genetic modifier of the Holt-Oram syndrome gene TBX5. Hum Mol Genet. 26:942–954. 2017.PubMed/NCBI View Article : Google Scholar | |
Song A, Patel A, Thamatrakoln K, Liu C, Feng D, Clayberger C and Krensky AM: Functional domains and DNA-binding sequences of RFLAT-1/KLF13, a Krüppel-like transcription factor of activated T lymphocytes. J Biol Chem. 277:30055–30065. 2002.PubMed/NCBI View Article : Google Scholar | |
Lavallée G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME and Nemer M: The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J. 25:5201–5213. 2006.PubMed/NCBI View Article : Google Scholar | |
Zhao W, Wang J, Shen J, Sun K, Zhu J, Yu T, Ji W, Chen Y, Fu Q and Li F: Mutations in VEGFA are associated with congenital left ventricular outflow tract obstruction. Biochem Biophys Res Commun. 396:483–488. 2010.PubMed/NCBI View Article : Google Scholar | |
Greenway SC, McLeod R, Hume S, Roslin NM, Alvarez N, Giuffre M, Zhan SH, Shen Y, Preuss C, Andelfinger G, et al: Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect. Can J Cardiol. 30:181–187. 2014.PubMed/NCBI View Article : Google Scholar | |
Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegårdh J, Enell H, Jonzon A, Vikkula M, Gutierrez I, et al: Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet. 17:256–265. 2008.PubMed/NCBI View Article : Google Scholar | |
Martin KM, Metcalfe JC and Kemp PR: Expression of Klf9 and Klf13 in mouse development. Mech Dev. 103:149–151. 2001.PubMed/NCBI View Article : Google Scholar | |
Gordon AR, Outram SV, Keramatipour M, Goddard CA, Colledge WH, Metcalfe JC, Hager-Theodorides AL, Crompton T and Kemp PR: Splenomegaly and modified erythropoiesis in KLF13-/- mice. J Biol Chem. 283:11897–11904. 2008.PubMed/NCBI View Article : Google Scholar |