1
|
Li Z, Delaney MK, O'Brien KA and Du X:
Signaling during platelet adhesion and activation. Arterioscler
Thromb Vasc Biol. 30:2341–2349. 2010.PubMed/NCBI View Article : Google Scholar
|
2
|
Stevens H and McFadyen JD: Platelets as
central actors in thrombosis-reprising an old role and defining a
new character. Semin Thromb Hemost. 45:802–809. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Mosesson MW: Fibrinogen and fibrin
structure and functions. J Thromb Haemost. 3:1894–1904.
2005.PubMed/NCBI View Article : Google Scholar
|
4
|
Petzold T, Thienel M, Dannenberg L,
Mourikis P, Helten C, Ayhan A, M'Pembele R, Achilles A, Trojovky K,
Konsek D, et al: Rivaroxaban reduces arterial thrombosis by
inhibition of FXa-driven platelet activation via protease activated
receptor-1. Circ Res. 126:486–500. 2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Mackman N, Spronk HMH, Stouffer GA and Ten
Cate H: Dual anticoagulant and antiplatelet therapy for coronary
artery disease and peripheral artery disease patients. Arterioscler
Thromb Vasc Biol. 38:726–732. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Qiu T, Zhou H, Li S, Tian N, Li Z, Wang R,
Sun P, Peng J, Du J, Ma X, et al: Effects of saccharides from
Arctium lappa L. Root on FeCl3-induced arterial
thrombosis via the ERK/NF-κB signaling pathway. Oxid Med Cell
Longev. 2020(7691352)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW,
Lee SM, Leung GP, Yu PH and Chan SW: A review of the
pharmacological effects of Arctium lappa (burdock).
Inflammopharmacology. 19:245–254. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Maghsoumi-Norouzabad L, Alipoor B, Abed R,
Eftekhar Sadat B, Mesgari-Abbasi M and Asghari Jafarabadi M:
Effects of Arctium lappa L. (Burdock) root tea on
inflammatory status and oxidative stress in patients with knee
osteoarthritis. Int J Rheum Dis. 19:255–261. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Rajasekharan SK, Ramesh S, Satish AS and
Lee J: Antibiofilm and Anti-β-lactamase activities of burdock root
extract and chlorogenic acid against klebsiella pneumoniae. J
Microbiol Biotechnol. 27:542–551. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Rajasekharan SK, Ramesh S, Bakkiyaraj D,
Elangomathavan R and Kamalanathan C: Burdock root extracts limit
quorum-sensing-controlled phenotypes and biofilm architecture in
major urinary tract pathogens. Urolithiasis. 43:29–40.
2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Li X, Zhao Z, Kuang P, Shi X, Wang Z and
Guo L: Regulation of lipid metabolism in diabetic rats by
Arctium lappa L. polysaccharide through the PKC/NF-κB
pathway. Int J Biol Macromol. 136:115–122. 2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Tousch D, Bidel LP, Cazals G, Ferrare K,
Leroy J, Faucanié M, Chevassus H, Tournier M, Lajoix AD and
Azay-Milhau J: Chemical analysis and antihyperglycemic activity of
an original extract from burdock root (Arctium lappa). J
Agric Food Chem. 62:7738–7745. 2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Liu W, Wang J, Zhang Z, Xu J, Xie Z,
Slavin M and Gao X: In vitro and in vivo antioxidant activity of a
fructan from the roots of Arctium lappa L. Int J Biol
Macromol. 65:446–453. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Pratico D, Iuliano L, Ghiselli A,
Alessandri C and Violi F: Hydrogen peroxide as trigger of platelet
aggregation. Haemostasis. 21:169–174. 1991.PubMed/NCBI View Article : Google Scholar
|
15
|
Xu Z, Liang Y, Delaney MK, Zhang Y, Kim K,
Li J, Bai Y, Cho J, Ushio-Fukai M, Cheng N and Du X: Shear and
integrin outside-in signaling activate NADPH-oxidase 2 to promote
platelet activation. Arterioscler Thromb Vasc Biol. 41:1638–1653.
2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Delaney MK, Kim K, Estevez B, Xu Z,
Stojanovic-Terpo A, Shen B, Ushio-Fukai M, Cho J and Du X:
Differential roles of the NADPH-Oxidase 1 and 2 in platelet
activation and thrombosis. Arterioscler Thromb Vasc Biol.
36:846–854. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Liu Y, Hu M, Luo D, Yue M, Wang S, Chen X,
Zhou Y, Wang Y, Cai Y, Hu X, et al: Class III PI3K positively
regulates platelet activation and thrombosis via PI(3)P-directed
function of NADPH oxidase. Arterioscler Thromb Vasc Biol.
37:2075–2086. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Shi P, Zhang L, Zhang M, Yang W, Wang K,
Zhang J, Otsu K, Huang G, Fan X and Liu J: Platelet-Specific p38α
deficiency improved cardiac function after myocardial infarction in
mice. Arterioscler Thromb Vasc Biol. 37:e185–e196. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang
Y, Liu M, Zhao X, Xie Y, Yang Y, et al: SARS-CoV-2 binds platelet
ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol.
13(120)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Ma YQ, Qin J and Plow EF: Platelet
integrin alpha(IIb)beta(3): Activation mechanisms. J Thromb
Haemost. 5:1345–1352. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Merten M and Thiagarajan P: P-selectin
expression on platelets determines size and stability of platelet
aggregates. Circulation. 102:1931–1936. 2000.PubMed/NCBI View Article : Google Scholar
|
22
|
Varga-Szabo D, Pleines I and Nieswandt B:
Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc
Biol. 28:403–412. 2008.PubMed/NCBI View Article : Google Scholar
|
23
|
Lin SC, Lin CH, Lin CC, Lin YH, Chen CF,
Chen IC and Wang LY: Hepatoprotective effects of Arctium
lappa Linne on liver injuries induced by chronic ethanol
consumption and potentiated by carbon tetrachloride. J Biomed Sci.
9:401–409. 2002.PubMed/NCBI View Article : Google Scholar
|
24
|
Ferracane R, Graziani G, Gallo M, Fogliano
V and Ritieni A: Metabolic profile of the bioactive compounds of
burdock (Arctium lappa) seeds, roots and leaves. J Pharm
Biomed Anal. 51:399–404. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang N, Wang Y, Kan J, Wu X, Zhang X,
Tang S, Sun R, Liu J, Qian C and Jin C: In vivo and in vitro
anti-inflammatory effects of water-soluble polysaccharide from
Arctium lappa. Int J Biol Macromol. 135:717–724.
2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhang X, Zhang N, Kan J, Sun R, Tang S,
Wang Z, Chen M, Liu J and Jin C: Anti-inflammatory activity of
alkali-soluble polysaccharides from Arctium lappa L. and its
effect on gut microbiota of mice with inflammation. Int J Biol
Macromol. 154:773–787. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Kardosova A, Ebringerova A, Alfoldi J,
Nosal'ova G, Franova S and Hribalova V: A biologically active
fructan from the roots of Arctium lappa L., var. Herkules.
Int J Biol Macromol. 33:135–140. 2003.PubMed/NCBI View Article : Google Scholar
|
28
|
King SL, Joshi HJ, Schjoldager KT, Halim
A, Madsen TD, Dziegiel MH, Woetmann A, Vakhrushev SY and Wandall
HH: Characterizing the O-glycosylation landscape of human plasma,
platelets, and endothelial cells. Blood Adv. 1:429–442.
2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Toonstra C, Hu Y and Zhang H: Deciphering
the roles of N-glycans on collagen-platelet interactions. J
Proteome Res. 18:2467–2477. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Li L, Qu C, Lu Y, Gong Y, You R, Miao L
and Guo S: The platelet surface glycosylation caused by glycosidase
has a strong impact on platelet function. Blood Coagul
Fibrinolysis. 30:217–223. 2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Li L, Qu C, Wu X, Dai J, Lu Y, Gong Y, You
R and Liu Y: Patterns and levels of platelet glycosylation in
patients with coronary heart disease and type 2 diabetes mellitus.
J Thromb Thrombolysis. 45:56–65. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Suzuki-Inoue K, Fuller GL, Garcia A, Eble
JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing
GD, et al: A novel Syk-dependent mechanism of platelet activation
by the C-type lectin receptor CLEC-2. Blood. 107:542–549.
2006.PubMed/NCBI View Article : Google Scholar
|
33
|
Kardeby C, Falker K, Haining EJ, Criel M,
Lindkvist M, Barroso R, Påhlsson P, Ljungberg LU, Tengdelius M,
Rainger GE, et al: Synthetic glycopolymers and natural fucoidans
cause human platelet aggregation via PEAR1 and GPIbα. Blood Adv.
3:275–287. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Pacienza N, Pozner RG, Bianco GA, D'Atri
LP, Croci DO, Negrotto S, Malaver E, Gómez RM, Rabinovich GA and
Schattner M: The immunoregulatory glycan-binding protein galectin-1
triggers human platelet activation. FASEB J. 22:1113–1123.
2008.PubMed/NCBI View Article : Google Scholar
|
35
|
Romaniuk MA, Tribulatti MV, Cattaneo V,
Lapponi MJ, Molinas FC, Campetella O and Schattner M: Human
platelets express and are activated by galectin-8. Biochem J.
432:535–547. 2010.PubMed/NCBI View Article : Google Scholar
|
36
|
Lin L, Yang L, Chen J, Zhou L, Li S, Gao N
and Zhao J: High-molecular-weight fucosylated glycosaminoglycan
induces human platelet aggregation depending on
alphaIIbβ3 and platelet secretion. Platelets.
32:975–983. 2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Tengdelius M, Kardeby C, Falker K,
Griffith M, Påhlsson P, Konradsson P and Grenegård M:
Fucoidan-mimetic glycopolymers as tools for studying molecular and
cellular responses in human blood platelets. Macromol Biosci.
17:2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang Z, Till S, Jiang C, Knappe S,
Reutterer S, Scheiflinger F, Szabo CM and Dockal M:
Structure-activity relationship of the pro- and anticoagulant
effects of Fucus vesiculosus fucoidan. Thromb Haemost. 111:429–437.
2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Jiang YY, Yu J, Li YB, Wang L, Hu L, Zhang
L and Zhou YH: Extraction and antioxidant activities of
polysaccharides from roots of Arctium lappa L. Int J Biol
Macromol. 123:531–538. 2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Liang X, Gao Y, Fei W, Zou Y, He M, Yin L,
Yuan Z, Yin Z and Zhang W: Chemical characterization and
antioxidant activities of polysaccharides isolated from the stems
of Parthenocissus tricuspidata. Int J Biol Macromol. 119:70–78.
2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Meng L, Sun S, Li R, Shen Z, Wang P and
Jiang X: Antioxidant activity of polysaccharides produced by
Hirsutella sp. and relation with their chemical characteristics.
Carbohydr Polym. 117:452–457. 2015.PubMed/NCBI View Article : Google Scholar
|
42
|
Fuentes E and Palomo I: Role of oxidative
stress on platelet hyperreactivity during aging. Life Sci.
148:17–23. 2016.PubMed/NCBI View Article : Google Scholar
|
43
|
Dayal S, Wilson KM, Motto DG, Miller FJ
Jr, Chauhan AK and Lentz SR: Hydrogen peroxide promotes
aging-related platelet hyperactivation and thrombosis. Circulation.
127:1308–1316. 2013.PubMed/NCBI View Article : Google Scholar
|
44
|
Tian X, Sui S, Huang J, Bai JP, Ren TS and
Zhao QC: Neuroprotective effects of Arctium lappa L. roots
against glutamate-induced oxidative stress by inhibiting
phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.
Environ Toxicol Pharmacol. 38:189–198. 2014.PubMed/NCBI View Article : Google Scholar
|
45
|
Sheehan JP and Walke EN: Depolymerized
holothurian glycosaminoglycan and heparin inhibit the intrinsic
tenase complex by a common antithrombin-independent mechanism.
Blood. 107:3876–3882. 2006.PubMed/NCBI View Article : Google Scholar
|
46
|
Xiao C, Zhao L, Gao N, Wu M and Zhao J:
Nonasaccharide inhibits intrinsic factor Xase complex by binding to
factor IXa and disrupting factor IXa-factor VIIIa interactions.
Thromb Haemost. 119:705–715. 2019.PubMed/NCBI View Article : Google Scholar
|
47
|
Torri G and Naggi A: Heparin centenary-an
ever-young life-saving drug. Int J Cardiol. 212 (Suppl 1):S1–S4.
2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Zieris A, Prokoph S, Levental KR, Welzel
PB, Grimmer M, Freudenberg U and Werner C: FGF-2 and VEGF
functionalization of starPEG-heparin hydrogels to modulate
biomolecular and physical cues of angiogenesis. Biomaterials.
31:7985–7994. 2010.PubMed/NCBI View Article : Google Scholar
|